Thermodynamic properties and bioactive compounds of mandacaru dried waste
Carolina de Miranda Gondim
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorRossana Maria Feitosa de Figueirêdo
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorAlexandre José de Melo Queiroz
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorJanaína Almeida Dantas Esmero
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorCorresponding Author
Henrique Valentim Moura
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Correspondence
Henrique Valentim Moura, Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil.
Email: [email protected]
Search for more papers by this authorInacia dos Santos Moreira
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorCarolina de Miranda Gondim
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorRossana Maria Feitosa de Figueirêdo
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorAlexandre José de Melo Queiroz
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorJanaína Almeida Dantas Esmero
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorCorresponding Author
Henrique Valentim Moura
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Correspondence
Henrique Valentim Moura, Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil.
Email: [email protected]
Search for more papers by this authorInacia dos Santos Moreira
Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, Brazil
Search for more papers by this authorAbstract
Mandacaru is a cactus native to the semiarid region of Brazil, of which the fruits are edible, highly perishable and rich in bioactive compounds, present mainly in the peel. The aim of this study was to determine the drying kinetics of the processed peels of the mandacaru fruit at three different temperatures, fit mathematical models to the experimental data, determine the effective diffusivity and the thermodynamic properties and evaluate the influence of the drying conditions on the bioactive compound concentrations. The residues from the mandacaru fruits, composed of the peels, were ground with a 3% ascorbic acid solution to transform them into a homogeneous paste. The peel paste was placed in stainless steel trays, spread out to give an approximately 0.5 cm layer and dried in a convective drying oven with forced air circulation at a velocity of 1.0 m/s at temperatures of 50, 60 and 70°C. Mathematical models found in the literature were fitted to the drying kinetics of the mandacaru fruit peel paste, and of these the Midilli model fitted the experimental data best. The effective diffusivity of the water increased with drying temperature, as also the Gibbs free energy. The activation energy was to the order of 39.15 kJ/mol. The enthalpy presented positive values, decreasing with increase in drying temperature, but the entropy presented negative values, progressively lower with increase in temperature. Important betalain concentrations were determined in the mandacaru fruit peels, especially betaxanthins, an active principal of interest to the food industry as a natural pigment. Despite the decrease in concentration of the bioactive compounds with convective drying, the powders still presented significant amounts, the temperature of 70°C resulting in the highest bioactive compound concentrations in the powder samples.
Practical applications
The use of the data presented here for the thermodynamic properties and bioactive compounds provides support for the use of the dried Mandacaru residues (previously discarded) in the production of new foods, due to knowledge of the processing time and composition of the sample. The Mandacaru peel powder, rich in bioactive compounds, could be incorporated into various food formulations in the bakery and yogurt segments, amongst others.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- Alibas, I. (2014). Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Science and Technology, 34(2), 394–401.
- Almeida, R. L. J., Santos, N. C., Alves, I. L., & André, A. M. M. C. N. (2020). Evaluation of thermodynamic properties and antioxidant activities of Achachairu (Garcinia humilis) peels under drying process. Flavour and Fragrance Journal, 36(2), 213–222.
- Alves, N. M. C., Silva, T. A. A., Santos, S. B., Galle, N. B. C., Silva, I. D. F., & Silva, M. I. P. (2021). Drying kinetics and thermodynamic properties of ‘baru’ almond flours. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 30–36.
- Araújo, A. J. B., Silva, W. P., Moreira, I. S., & Santos, N. C. (2021). Effect of drying temperature on the physicochemical characteristics, bioactive compounds, and antioxidant activity of “Palmer” mango peels. Journal of Food Process Engineering, 44(11), e13860.
- Araújo, F. F., Farias, D. P., Neri-Numa, I. A., & Pastore, G. M. (2021). Underutilized plants of the Cactaceae family: Nutritional aspects and technological applications. Food Chemistry, 362, 130196.
- Bechlin, T. R., Granella, S. J., Christ, D., Coelho, S. R. M., & Paz, C. H. O. (2020). Effects of ozone application and hot-air drying on orange peel: Moisture diffusion, oil yield, and antioxidant activity. Food and Bioproducts Processing, 123, 80–89.
- Brasil. 2017. Instituto Nacional do Semiárido. https://portal.insa.gov.br/noticias/352-insa-contribui-com-estudo-da-fao-que-avalia-o-uso-de-terras-arborizacao-e-cobertura-vegetal-em-zonas-aridas
- Cabral, F. S., Santos, S. G. F., Cruz, D. R. C., Almeida, V. G., Rodovalho, R. S., & Melo, M. F. (2021). Cinética de secagem de raspas de abóbora. Científica, 49(1), 1–8.
10.15361/1984-5529.2021v49n1p01-08 Google Scholar
- Castellar, M. R., Solano, F., & Obón, J. M. (2012). Betacyanin and other antioxidants production during growth of Opuntia stricta (Haw.) fruits. Plant Foods Human Nutrition, 67(4), 337–343.
- Cavalcante, A., Teles, M., & Machado, M. (2013). Cactos do Semiárido do Brasil: Guia Ilustrado. INSA.
- Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R- squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer J Computer Science, 7, 1–24.
- Corrêa, P. C., Botelho, F. M., Oliveira, G. H. H., Goneli, A. L. D., Resende, O., & Campos, S. C. (2011). Mathematical modeling of the drying process of corn ears. Acta Scientiarum. Agronomy, 33(4), 575–581.
- Corrêa, P. C., Oliveira, G. H. H., Oliveira, A. P. L. R., Botelho, F. M., & Goneli, A. L. D. (2017). Thermodynamic properties of drying process and water absorption of rice grains. CyTA – Journal of Food, 15(2), 204–210.
- Costa, C. F., Corrêa, P. C., Vanegas, J. D. B., Baptestini, F. M., Campos, R. C., & Fernandes, L. S. (2016). Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process. Aǧrı, 20(6), 576–580.
- Dağhan, Ş., Yildirim, A., Mehmet Yilmaz, F., Vardin, H., & Karaaslan, M. (2018). The effect of temperature and method of drying on Isot (Urfa pepper) and its vitamin c degradation kinetics. Italian Journal of Food Science, 30(3), 504–521.
- Deng, L., Mujumdar, A. S., Yang, W.-X., Zhang, Q., Zheng, Z.-A., Wu, M., & Xiao, H.-W. (2019). Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 44(1), e14294.
- Dutra, J. C. V., Oliveira, J. B. H., Santos, V. S., Pereira, P. R. C., Ferreira, J. M., & Batitucci, M. C. P. (2019). Fruiting increases total contente of flavonoids and antiproliferative effects of Cereus jamacaru D. C. cladodes in sarcoma 180 cells in vitro. Asian Pacific Journal of Tropical Biomedicine, 9(2), 66–72.
- Ferreira, J. P. L., Queiroz, A. J. M., Figueirêdo, R. M. F., Silva, W. P., Gomes, J. P., Santos, D. C., Silva, H. A., Rocha, A. P. T., Paiva, A. C. C., Chaves, A. D. C. G., Lima, F. G. B., & Andrade, R. O. (2021). Utilization of cumbeba (Tacinga inamoena) residue: Drying kinetics and effect of process conditions on antioxidant bioactive compounds. Food, 10, 788.
- Ferreira, J. P. L., Silva, W. P., Queiroz, A. J. M., Figueirêdo, R. M. F., Gomes, J. P., Melo, B. A., Santos, G. C., Lima, T. L. B., Branco, R. R. C., Hamawand, I., & Lima, A. G. B. (2020). Description of cumbeba (Tacinga inamoena) waste drying at different temperatures using diffusion models. Food, 9(12), 1818.
- Ferreira Júnior, W. N., Resende, O., Pinheiro, G. K. I., Silva, L. C. M., Souza, D. G., & Sousa, K. A. (2021). Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds. Aǧrı, 25(1), 37–43.
- Francis, F. J. (1982). Analysis of anthocyanins. In P. Markakis (Ed.), Anthocyanins as food colors (pp. 181–207). Academic Press.
- Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE, 17, 1167–1172.
- Henderson, S. M., & Pabis, S. (1961). Grain drying theory: I Temperature effect on drying coefficient. Journal of Agricultural Engineering Research., 6, 169–174.
- Instituto Adolfo Lutz. (2008). Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos Para Análise de Alimentos ( 1st ed.). Author.
- Jacob, M. C. M., Medeiros, M. F. A., & Albuquerque, U. P. (2020). Biodiverse food plants in the semiarid region of Brazil have unknown potencial: A systematic review. PLoS One, 15(5), e0230936.
- Karathanos, V. T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337–344.
- Kassem, A. S. (1998). Comparative studies on thin layer drying models for wheat. International Congress on Agricultural Engineering, Rabat: ANAFID, 6, 2–6.
- Kayran, S., & Doymaz, I. (2017). Determination of drying kinetics and physicochemical characterization of apricot pomace in hot-air dryer. Journal of Thermal Analysis and Calorimetry, 130, 1163–1170.
- Lucena, C. M., Lucena, R. F. P., Costa, G. M., Carvalho, T. K. N., Costa, G. G. S., Alves, R. R. N., Pereira, D. D., Ribeiro, J. E. S., Alves, C. A. B., Quirino, Z. G. M., & Nunes, E. N. (2013). Use and Knowledge of Cactaceae in Northeastern Brasil. Journal of Ethnobiology and Ethnomedicine, 9(1), 62.
- Marsiglia, W. I. M. L., Santiago, A. M., Alves, H. G., Almeida, R. L. J., Santos, N. C., Muniz, C. E. S., Galdino, P. O., Mota, M. M. A., & Almeida, M. M. (2021). Modelagem e simulação do processo de secagem das cascas de jabuticaba (Myrciaria cauliflora). Research, Society and Development, 10(3), 1–14.
10.33448/rsd-v10i3.13214 Google Scholar
- Melo, K. S., Figueirêdo, R. M. F., Queiroz, A. J. M., Fernandes, T. K. S., & Bezerra, M. C. T. (2013). Secagem em camada de espuma da polpa do fruto do mandacaru: Experimentação e ajustes de modelos matemáticos. Revista Caatinga, 26(2), 10–17.
- Mewa, E. A., Okoth, M. W., Kunyanga, C. N., & Rugiri, M. N. (2019). Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable Energy, 139, 235–241.
- Midilli, A., Kucuk, H., & Yapar, Z. A. (2002). New model for single-layer drying. Dry Technology, 20, 1503–1513.
- Moura, H. V., Figueirêdo, R. M. F., Queiroz, A. J. M., Silva, E. T. V., Esmero, J. A. D. E., & Lisbôa, J. F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapia residues. Journal of Food Process Engineering, 44, e13768.
- Mphahlele, R. R., Pathare, P. B., & Opara, U. L. (2019). Drying kinetics of pomegranate fruit peel (cv. Wonderful). Scientific African, 5, e00145.
10.1016/j.sciaf.2019.e00145 Google Scholar
- Mugi, V. R., & Chandramohan, V. P. (2021). Shrinkage, effective diffusion coefficient, surface transfer coefficients and their factors during solar drying of food products – A review. Solar Energy, 229, 84–101.
- Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidante properties of passion fruit peel. Journal of Food Engineering, 170, 108–118.
- Nascimento, V. T., Moura, N. P., Vasconcelos, M. A. S., Maciel, M. I. S., & Albuquerque, U. P. (2011). Chemical characterization of native wild plants of dry seasonal forests of the semi-arid region of northeastern Brazil. Food Research International, 44(7), 2112–2119.
- Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers [MSc Thesis]. Purdue University.
- Santos, F. S., Figueirêdo, R. M. F., Queiroz, A. J. M., & Santos, D. C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Aǧrı, 21(12), 872–877.
- Santos, I. A. (2018). Compostos fenólicos totais e atividade antioxidante da casca do fruto do mandacaru (Cereus jamacaru) em pó obtido em secador de leite fixo. Universidade Federal de Campina Grande.
- Santos, N. C., Almeida, R. L. J., Silva, L. R. I., Pereira, T. S., Silva, V. M. A., & Eduardo, R. S. (2020). Pasteurização da polpa e da casca do fruto do mandacaru (Cereus jamacaru). Reseach, Society and Development, 9(7), 1–12.
- Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261–1265.
- Silva, D. P., Santos, S. G. F., Silva, I. L., Silva, H. W., & Rodovalho, R. S. (2020). Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia L.) leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(10), 707–712.
- Silva, H. W., Rodovalho, R. S., Velasco, M. F., Silva, C. F., & Vale, L. S. R. (2016). Kinetics and thermodynamic properties related to the drying of “Cabacinha” pepper fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(2), 174–180.
- Silva, L. F. C. R., Valle, L. S., Nascimento, A. R. C., & Medeiros, M. F. T. (2019). Cereus jamacaru DC. (Cactaceae): From 17th century naturalists to modern day scientifi c and technological prospecting. Acta Botanica Brasilica, 33(2), 191–197.
- Susanti, D. Y., Sediawan, W. B., Fahrurrozi, M., Hidayat, M., & Putri, A. Y. (2021). Encapsulation of red sorghum extract rich in proanthocyanidins: Process formulation and mechanistic model of foam-mat drying at various temperature. Chemical Engineering and Processing Process Intensification, 164, 108375.
- Tai, N. V., Linh, M. N., & Thuy, N. M. (2021). Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam. Food Research, 5(5), 244–249.
10.26656/fr.2017.5(5).180 Google Scholar
- Tavone, L. A. S., Nascimento, K. M., Fachina, Y. J., Madrona, G. S., Bergamasco, R. C., & Scapim, M. R. S. (2021). Mathematical modeling and effect of thin-layer drying and lyophilization on antioxidant compounds from ultrasonic-assisted extracted Muntingia calabura peels. Acta Scientiarum. Agronomy, 43, 1–8.
- Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying: A new model. Transactions of ASAE, 11(4), 582–586.
10.13031/2013.39473 Google Scholar
- Toğrul, I. T., & Pehlivan, D. (2002). Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering, 55, 209–216.
- Torki-Harchegani, M., Ghanbarian, D., & Sadeghi, M. (2014). Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat and Mass Transfer, 51(8), 1121–1129.
- Verna, L., Bucklin, R., Enda, J., & Wratten, F. (1985). Effects on drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301.
10.13031/2013.32245 Google Scholar
- Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of the ASAE, 11, 668–672.
- Wilcaso, P., Perez, S., Monar, M., Gaibor, J., & Niño-Ruiz, Z. (2018). Characterization and drying kinetics modeling for Orange peel to obtain for alimentary purposes in bolívar province, Ecuador. Italian Journal of Food Science, 242–251.
- Yildirim, A. (2018). Kinetics and thermodynamic properties of parboiled burgos wheat (triticum durum) in Turkey during drying. Applied Ecology and Environmental Research, 16(1), 495–510.