Anti-browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers
Zhi Zhou Siew
Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Search for more papers by this authorEric Wei Chiang Chan
Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Chen Wai Wong
Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Correspondence
Chen Wai Wong, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia.
Email: [email protected]
Search for more papers by this authorZhi Zhou Siew
Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Search for more papers by this authorEric Wei Chiang Chan
Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Chen Wai Wong
Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
Correspondence
Chen Wai Wong, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia.
Email: [email protected]
Search for more papers by this authorAbstract
Fresh-cut fruits and vegetables are still an active area of study despite being a staple of food outlets offering minimally processed foods. These minimally processed foods often have a short shelf life due to enzymatic browning. Active packaging is of current interest as it offers an efficient method to deliver polyphenol oxidase inhibitors onto the surface of foods to suppress browning. Inhibitors incorporated into active packaging can transfer to the food surface either direct or indirect contact of active packaging to food surface. Given that food packaging is often single use, the application of biodegradable polymers in active packaging is very attractive but their compatibility is still being studied. This review would present the determinants for compatibility between inhibitors and packaging matrix and their application to different food types. The review would also feature some novel solutions to enhance the compatibility and performance of anti-browning active packaging.
Novelty impact statement
Active packaging is a novel technology that interacts with food to prolong the food quality to a greater extent including browning inhibition. The choice of packaging polymer and browning inhibitor could affect the efficiency of active packaging to deliver browning inhibition action. This review summarized the compatibility between the packaging polymer and browning inhibitor and the releasing mechanism of the browning inhibitor integrated in the active packaging to the food surface. These could aid the food manufacturers to develop an effective enzymatic browning inhibition-based active packaging in the future.
CONFLICT OF INTEREST
The authors have declared there is no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this review manuscript.
REFERENCES
- Acharya, S., Hu, Y., Moussa, H., & Abidi, N. (2017). Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process. Journal of Applied Polymer Science, 134(21), 1–12. https://doi.org/10.1002/app.44871
- Ahmad Qamar, S., Asgher, M., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137, 109625. https://doi.org/10.1016/j.foodres.2020.109625
- Almasi, H., Jahanbakhsh Oskouie, M., & Saleh, A. (2020). A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition, 1–21, 2601–2621. https://doi.org/10.1080/10408398.2020.1783199
- Alparslan, Y., & Baygar, T. (2017). Effect of chitosan film coating combined with orange peel essential oil on the shelf life of Deepwater pink shrimp. Food and Bioprocess Technology, 10(5), 842–853. https://doi.org/10.1007/s11947-017-1862-y
- Ataide, J. A., de Carvalho, N. M., Rebelo, M. A., Chaud, M. V., Grotto, D., Gerenutti, M., Rai, M., Mazzola, P. G., & Jozala, A. F. (2017). Bacterial nanocellulose loaded with bromelain: Assessment of antimicrobial, antioxidant and physical-chemical properties. Scientific Reports, 7(1), 18031. https://doi.org/10.1038/s41598-017-18271-4
- Baiano, A., Marchitelli, V., Tamagnone, P., & Nobile, M. A. D. (2006). Use of active packaging for increasing ascorbic acid retention in food beverages. Journal of Food Science, 69(9), 502–508. https://doi.org/10.1111/j.1365-2621.2004.tb09936.x
- Benbettaïeb, N., Karbowiak, T., Brachais, C.-H., & Debeaufort, F. (2015). Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: A structure–function approach. European Polymer Journal, 67, 113–127. https://doi.org/10.1016/j.eurpolymj.2015.03.060
- Blanco Parte, F. G., Santoso, S. P., Chou, C., Verma, V., Wang, H., Ismadji, S., & Cheng, K. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397–414. https://doi.org/10.1080/07388551.2020.1713721
- Bobo-García, G., Arroqui, C., Merino, G., & Vírseda, P. (2019). Antibrowning compounds for minimally processed potatoes: A review. Food Reviews International, 36(5), 529–546. https://doi.org/10.1080/87559129.2019.1650761
- Brandelero, R. P. H., Brandelero, E. M., & Almeida, F. M. (2016). Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.). Ciência e Agrotecnologia, 40(5), 510–521. https://doi.org/10.1590/1413-70542016405010516
- Cerit, I., Pfaff, A., Ercal, N., & Demirkol, O. (2020). Postharvest application of thiol compounds affects surface browning and antioxidant activity of fresh cut potatoes. Journal of Food Biochemistry, 44(10), e13378. https://doi.org/10.1111/jfbc.13378
- Chang, C.-K., Cheng, K.-C., Hou, C.-Y., Wu, Y.-S., & Hsieh, C.-W. (2021). Development of active packaging to extend the shelf life of Agaricus bisporus by using plasma technology. Polymers, 13(13), 2120. https://doi.org/10.3390/polym13132120
- Cortellino, G., Gobbi, S., Bianchi, G., & Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends in Food Science & Technology, 46(2), 320–330. https://doi.org/10.1016/j.tifs.2015.06.002
- Dicastillo, C. L. D., Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers, 136, 1052–1060. https://doi.org/10.1016/j.carbpol.2015.10.013
- Diken, M. E. (2020). Inhibitory effect of garlic extracts on polyphenoloxidase. Journal of Balikesir University Institute of Science and Technology, 22(1), 240–247. https://doi.org/10.25092/baunfbed.680664
10.25092/baunfbed.680664 Google Scholar
- Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93–101. https://doi.org/10.1016/j.foodres.2018.06.073
- Feng, Z., Li, L., Wang, Q., Wu, G., Liu, C., Jiang, B., & Xu, J. (2019). Effect of antioxidant and antimicrobial coating based on whey protein nanofibrils with TiO2 nanotubes on the quality and shelf life of chilled meat. International Journal of Molecular Sciences, 20(5), 1184. https://doi.org/10.3390/ijms20051184
- Fischer, S., Thummler, K., Volkert, B., Hettrich, K., Schmidt, I., & Fischer, K. (2008). Properties and applications of cellulose acetate. Macromolecular Symposia, 262, 89–96. https://doi.org/10.1002/masy.200850210
- Gaikwad, K. K., Singh, S., & Negi, Y. S. (2019). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 18, 269–284. https://doi.org/10.1007/s10311-019-00938-1
- Gantner, M., Guzek, D., Pogorzelska, E., Brodowska, M., Wojtasik-Kalinowska, I., & Godziszewska, J. (2016). The effect of film type and modified atmosphere packaging with different initial gas composition on the shelf life of white mushrooms (Agaricus bisporus L.). Journal of Food Processing and Preservation, 41(1), e13083. https://doi.org/10.1111/jfpp.13083
- Gui, H., Zhao, M., Zhang, S., Yin, R., Hu, C., Fan, M., & Li, L. (2022). Active Antioxidant Packaging from Essential Oils Incorporated Polylactic Acid/Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch for Preserving Straw Mushroom. Foods, 11(15), 2252.
- Hambleton, A., Voilley, A., & Debeaufort, F. (2011). Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocolloids, 25, 1128–1133. https://doi.org/10.1016/j.foodhyd.2010.10.010
- Hashim, F. J., Vichitphan, S., Han, J., & Vichitphan, K. (2021). Alternative approach for specific tyrosinase inhibitor screening: Uncompetitive inhibition of tyrosinase by Moringa oleifera. Molecules, 26(15), 1–12. https://doi.org/10.3390/molecules26154576
- Ioannou, I., & Ghoul, M. (2013). Prevention of enzymatic browning in fruit and vegetables. European Scientific Journal, 9(30), 310–341. https://doi.org/10.19044/esj.2013.v9n30p%25p
10.19044/esj.2013.v9n30p%p Google Scholar
- Jiang, J., Gong, L., Dong, Q., Kang, Y., Osako, K., & Li, L. (2019). Characterization of PLA-P3,4HB active film incorporated with essential oil: Application in peach preservation. Food Chemistry, 313(2), 126134. https://doi.org/10.1016/j.foodchem.2019.126134
- Kargwal, R., Garg, M. K., Singh, V. K., Garg, R., & Kumar, N. (2020). Principles of modified atmosphere packaging for shelf life extension of fruits and vegetables: An overview of storage conditions. International Journal of Chemical Studies, 8(3), 2245–2252. https://doi.org/10.22271/chemi.2020.v8.i3af.9545
10.22271/chemi.2020.v8.i3af.9545 Google Scholar
- Kawwduangdee, S., Chaveerach, A., Tanee, T., Siripiyasing, P., & Sudmoon, R. (2020). Effect of dried ethanol extract of arbutin-containing leaves from Artocarpus on tyrosinase inhibition and postharvest preservation. ScienceAsia, 46, 420–428. https://doi.org/10.2306/scienceasia1513-1874.2020.053
- Khan, M. R., Chinsirikul, W., Sane, A., & Chonhenchob, V. (2019). Combined effects of natural substances and modified atmosphere packaging on reducing enzymatic browning and postharvest decay of longan fruit. International Journal of Food Science & Technology, 55(2), 500–508. https://doi.org/10.1111/ijfs.14293
- Khan, M. T. H. (2012). Novel tyrosinase inhibitors from natural resources—Their computational studies. Current Medicinal Chemistry, 19(14), 2262–2272. https://doi.org/10.2174/092986712800229041
- Koller, M. (2014). Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. Applied Food Biotechnology, 1(1), 3–15. https://doi.org/10.22037/afb.v1i1.7127
10.22037/afb.v1i1.7127 Google Scholar
- Lee, S. Y., Baek, N., & Nam, T. (2015). Natural, semisynthetic and synthetic tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 1–13. https://doi.org/10.3109/14756366.2015.1004058
- Li, M., Yu, H., Xie, Y., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2021). Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material. LWT, 139, 110800. https://doi.org/10.1016/j.lwt.2020.110800
- Li, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials, 7(8), 207. https://doi.org/10.3390/nano7080207
- Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8, 1–20. https://doi.org/10.1038/am.2016.48
- Lim, W. Y., Cheun, C. F., & Wong, C. W. (2019). Inhibition of enzymatic browning in sweet potato (Ipomoea batatas [L.]) with chemical and natural anti-browning agents. Journal of Food Processing and Preservation, 43(11), 1–8. https://doi.org/10.1111/jfpp.14195
- Lim, W. Y., & Wong, C. W. (2018). Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale roscoe). Journal of Food Science and Technology, 55(8), 3001–3007. https://doi.org/10.1007/s13197-018-3218-7
- Loke, X.-J., Chang, C.-K., Hou, C.-Y., Cheng, K.-C., & Hsieh, C.-W. (2021). Plasma-treated polyethylene coated with polysaccharide and protein containing cinnamaldehyde for active packaging films and applications on tilapia (Orechromis niloticus) fillet preservation. Food Control, 125, 108016. https://doi.org/10.1016/j.foodcont.2021.108016
- Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2018). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77–96. https://doi.org/10.1007/s41783-018-0049-y
10.1007/s41783-018-0049-y Google Scholar
- Moccia, F., Agustin-Salazar, S., Berg, A.-L., Setaro, B., Micillo, R., Pizzo, E., Weber, F., Gamez-Meza, N., Schieber, A., Cerruti, P., Panzella, L., & Napolitano, A. (2020). Pecan (Carya illinoinensis [Wagenh.] K. Koch) nut shell as an accessible polyphenol source for active packaging and food colorant stabilization. ACS Sustainable Chemistry & Engineering, 8(17), 6700–6712. https://doi.org/10.1021/acssuschemeng.0c00356
- Moon, K. M., Kwon, E.-B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 1–15. https://doi.org/10.3390/molecules25122754
- Murmu, S. B., & Mishra, H. N. (2018). The effect of edible coating based on arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245, 820–828. https://doi.org/10.1016/j.foodchem.2017.11.104
- Nasiri, M., Barzegar, M., Sahari, M. A., & Niakousari, M. (2019). Efficiency of Tragacanth gum coating enriched with two different essential oils for deceleration of enzymatic browning and senescence of button mushroom (Agaricus bisporus). Food Science & Nutrition, 1-9, 1520–1528. https://doi.org/10.1002/fsn3.1000
- Pan, Y., Farmahini-Farahani, M., O'Hearn, P., Xiao, H., & Ocampo, H. (2016). An overview of bio-based polymers for packaging materials. Journal of Bioresources and Bioproducts, 1(3), 106–113. https://doi.org/10.21967/jbb.v1i3.49
10.21967/jbb.v1i3.49 Google Scholar
- Parreidt, T., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Food, 7(10), 170. https://doi.org/10.3390/foods7100170
- Patiño Vidal, C., López de Dicastillo, C., Rodríguez-Mercado, F., Guarda, A., Galotto, M. J., & Muñoz-Shugulí, C. (2022). Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Critical Reviews in Food Science and Nutrition, 62, 5495–5510. https://doi.org/10.1080/10408398.2021.1886038
- Patrício Silva, A. L., Prata, J. C., Duarte, A. C., Barcelò, D., & Rocha-Santos, T. (2021). An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chemical Engineering Journal, 426, 131201. https://doi.org/10.1016/j.cej.2021.131201
- Paunonen, S. (2013). Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources, 8(2), 3098–3121.
- Pawar, P. A., & Purwar, A. H. (2013). Biodegradable polymers in food packaging. American Journal of Engineering Research, 2(5), 151–164.
- Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32(2), 128–141. https://doi.org/10.1016/j.tifs.2013.06.003
- Pérez-Arauz, A. O., Aguilar-Rabiela, A. E., Vargas-Torres, A., Rodríguez-Hernández, A. I., Chavarría-Hernández, N., Vergara-Porras, B., & López-Cuellar, M. R. (2019). Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packaging and Shelf Life, 20, 100297. https://doi.org/10.1016/j.fpsl.2019.01.001
- Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403–425. https://doi.org/10.1080/14756366.2016.1256882
- Revin, V. V., Liyas'kina, E. V., Sapunova, N. B., & Bogatyreva, A. O. (2020). Isolation and characterization of the strains producing bacterial cellulose. Microbiology, 89(1), 86–95. https://doi.org/10.1134/s0026261720010130
- Rohmawati, B., Atikah Nata Sya'idah, F., Rhismayanti, R., Alighiri, D., & Tirza Eden, W. (2018). Synthesis of bioplastic-based renewable cellulose acetate from teak wood (Tectona grandis) biowaste using glycerol-chitosan plasticizer. Oriental Journal of Chemistry, 34(4), 1810–1816. https://doi.org/10.13005/ojc/3404014
- Rojas-Graü, M. A., Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: A review. International Journal of Food Science & Technology, 44(5), 875–889. https://doi.org/10.1111/j.1365-2621.2009.01911.x
- Rollini, M., Musatti, A., Cavicchioli, D., Bussini, D., Farris, S., Rovera, C., Romano, D., De Benedetti, S., & Barbiroli, A. (2020). From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study. Scientific Reports, 10(1), 21358. https://doi.org/10.1038/s41598-020-78430-y
- Sadeghi, K., & Seo, J. (2021). Photografting coating: An innovative approach to “non-migratory” active packaging. Advanced Functional Material, 31(28), 2010759. https://doi.org/10.1002/adfm.202010759
- Saydivalievich, S. K. (2020). Economic significance and theoretical fundamentals of sustainable development of fruit and vegetable growth. The American Journal of Social Science and Education Innovations, 2(8), 11–15. https://doi.org/10.37547/tajssei/Volume02Issue08-02
10.37547/tajssei/Volume02Issue08-02 Google Scholar
- Scarfato, P., Di Maio, L., & Incarnato, L. (2015). Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 132(48), 1–11. https://doi.org/10.1002/app.42597
- Shivakumar, N., Madhusudan, P., & Daniel, S. C. G. K. (2018). Nanomaterials for smart food packaging. In C. M. Hussain (Ed.), Handbook of nanomaterials for industrial applications (pp. 260–270). Elsevier. https://doi.org/10.1016/B978-0-12-813351-4.00016-X
10.1016/B978-0-12-813351-4.00016-X Google Scholar
- Shoker, R. M. H. (2020). A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes. International Journal for Research in Applied Sciences and Biotechnology, 7(5), 354–358. https://doi.org/10.31033/ijrasb.7.5.47
10.31033/ijrasb.7.5.47 Google Scholar
- Shrestha, L., Kulig, B., Moscetti, R., Massantini, R., Pawelzik, E., Hensel, O., & Sturm, B. (2020). Optimisation of physical and chemical treatments to control browning development and enzymatic activity on fresh-cut apple slices. Food, 9(1), 1–21. https://doi.org/10.3390/foods9010076
- Singh, B., Suri, K., Shevkani, K., Kaur, A., Kaur, A., & Singh, N. (2018). Enzymatic browning of fruit and vegetables: A review. In M. Kuddus (Ed.), Enzymes in food technology (pp. 63–78). Springer. https://doi.org/10.1007/978-981-13-1933-4_4
10.1007/978-981-13-1933-4_4 Google Scholar
- Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M., Pavan, S., & Montemurro, C. (2017). Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2), 377. https://doi.org/10.3390/ijms18020377
- Tran, T. T. D., & Tran, P. H. L. (2019). Controlled release film forming systems in drug delivery: The potential for efficient drug delivery. Pharmaceutics, 11(6), 290. https://doi.org/10.3390/pharmaceutics11060290
- Wong, L.-W., Hou, C.-Y., Hsieh, C.-C., Chang, C.-K., Wu, Y.-S., & Hsieh, C.-W. (2020). Preparation of antimicrobial active packaging film by capacitively coupled plasma treatment. LWT - Food Science and Technology, 117, 108612. https://doi.org/10.1016/j.lwt.2019.108612
- Yang, Y., Shi, Y., Cao, X., Liu, Q., Wang, H., & Kong, B. (2021). Preparation and functional properties of poly(vinyl alcohol)/ethyl cellulose/tea polyphenol electrospun nanofibrous films for active packaging material. Food Control, 130, 108331. https://doi.org/10.1016/j.foodcont.2021.108331
- Ye, J., Li, J., Han, X., Zhang, L., Jiang, T., & Xia, M. (2012). Effects of active modified atmosphere packaging on postharvest quality of shiitake mushrooms (Lentinula edodes) stored at cold storage. Journal of Integrative Agriculture, 11(3), 474–482. https://doi.org/10.1016/s2095-3119(12)60033-1
- Zhang, M., Meng, X., Bhandari, B., & Fang, Z. (2015). Recent developments in film and gas research in modified atmosphere packaging of fresh foods. Critical Reviews in Food Science and Nutrition, 56(13), 2174–2182. https://doi.org/10.1080/10408398.2013.819794
- Zhao, M., Zhang, S., Yin, R., Hu, C., Fan, M., & Li, L. (2021). Active antioxidant packaging from essential oils incorporated thermoplastic starch/polylactic acid/poly(butylene adipate-co-terephthalate) (TPS/PLA/PBAT) for the autolysis of straw mushroom (Volvariella Volvacea). SSRN, 1–35. https://doi.org/10.2139/ssrn.3921676
10.2139/ssrn.3921676 Google Scholar
- Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2019). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002
10.1016/j.aiepr.2019.11.002 Google Scholar
- Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.15457