Bioprocess optimization for glycopeptide biosurfactant production by means of Lactobacillus delbrueckii: Design expert laden approach
Corresponding Author
Surbhi Goyal
Department of Biotechnology, Punjabi University, Patiala, Punjab, India
Correspondence
Surbhi Goyal, Department of Biotechnology, Punjabi University, Patiala, Punjab 147001, India.
Email: [email protected]
Search for more papers by this authorJagdish Singh
Bioprocess Technology Laboratory, Mata Gujri College, Fatehgarh Sahib, Punjab, India
Search for more papers by this authorCorresponding Author
Surbhi Goyal
Department of Biotechnology, Punjabi University, Patiala, Punjab, India
Correspondence
Surbhi Goyal, Department of Biotechnology, Punjabi University, Patiala, Punjab 147001, India.
Email: [email protected]
Search for more papers by this authorJagdish Singh
Bioprocess Technology Laboratory, Mata Gujri College, Fatehgarh Sahib, Punjab, India
Search for more papers by this authorAbstract
A bacterial strain, Lactobacillus delbrueckii, was isolated and screened for high potential of biosurfactant (BS) production yield. The current research emphasizes the optimization of process parameters through OFAT (one factor at a time) and RSM (response surface methodology) to achieve optimal BS production. Therefore, xylose and peptone were screened as the best carbon and nitrogen sources respectively by means of OFAT, along with temperature (37°C), inoculum size (5%), and fermentation time (39 h). Furthermore, optimization of xylose (1% w/v), peptone (0.5%w/v), and pH (6.5) through Box–Behnken statistical design was validated by ANOVA (analysis of variance) and found significant (p < .05) with optimal BS yield (7.31 g/L). The solvent-extracted glycopeptide BS displayed cationic nature, with thermal (0–120°C), pH (2–12), and NaCl (2%–12% w/v) stability. The functional attributes of BS like antiadhesive and antimicrobial activity toward Gram-positive and Gram-negative bacteria and emulsifying potency against various vegetable oils make it worthwhile and applicable.
Practical applications
The recent applications of BS and hazards of pathogenic biofilm make it challenging to produce enhanced yield of BS. In light of this, present work is focused to optimize yield from Lactobacillus delbrueckii for its applications as antibiofilm and bioemulsifier agent in various industries. Furthermore, the glycoproteinaceous BS from microbe in question is itself unique and novel. Additionally, the statistical design of optimization provides experiment modeling, production rate, and significance of opted design which makes the whole process feasible to explore new possibilities for BS production.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
jfpp17195-sup-0001-TableS7-S18.docxWord 2007 document , 119 KB |
Data S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alkan, Z., Erginkaya, Z., Konuray, G., & Ünal, T. E. (2019). Production of biosurfactant by lactic acid bacteria using whey as growth medium. Turkish Journal of Veterinary and Animal Sciences, 43, 676–683. https://doi.org/10.3906/vet-1903-48
- Al-Dhabi, N. A., Esmail, G. A., & Arasu, M. V. (2020). Enhanced production of biosurfactant from Bacillus subtilis strain al-dhabi−130 under solid-state fermentation using date molasses from Saudi Arabia for bioremediation of crude-oil-contaminated soils. International Journal of Environmental Research and Public Health, 17, 1–20. https://doi.org/10.3390/ijerph17228446
- Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262–269. https://doi.org/10.1016/J.BIORTECH.2016.02.091
- Behzadnia, A., Moosavi-Nasab, M., & Tiwari, B. K. (2019). Stimulation of biosurfactant production by Lactobacillus plantarum using ultrasound. Ultrasonics Sonochemistry, 59, 104724. https://doi.org/10.1016/J.ULTSONCH.2019.104724
- Bodour, A. A., & Miller-Maier, R. M. (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32, 273–280. https://doi.org/10.1016/S0167-7012(98)00031-1
- Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53, 224–229. https://doi.org/10.1128/aem.53.2.224-229.1987
- De Giani, A., Zampolli, J., & Di Gennaro, P. (2021). Recent trends on biosurfactants with antimicrobial activity produced by bacteria associated with human health: Different perspectives on their properties, challenges, and potential applications. Frontiers in Microbiology, 12, 1–14. https://doi.org/10.3389/fmicb.2021.655150
- Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17, 7843–7853. https://doi.org/10.1093/NAR/17.19.7843
- Elshikh, M. (2017). Rhamnolipids and lactonic sophorolipids: Natural antimicrobial surfactants for oral hygiene. Journal of Applied Microbiology, 123(5), 1111–1123. https://doi.org/10.1111/jam.13550
- Fadhile Almansoory, A., Abu Hasan, H., Idris, M., Sheikh Abdullah, S. R., Anuar, N., & Musa Tibin, E. M. (2017). Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: Optimization using central composite design (CCD). Journal of Industrial and Engineering Chemistry, 47, 272–280. https://doi.org/10.1016/j.jiec.2016.11.043
- Fracchia, L., Cavallo, M., Allegrone, G., & Martinotti, M. G. (2010). A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Applied Microbiology and Biotechnology, 2, 827–837.
- Freitas, B. G., Brito, J. G. M., Brasileiro, P. P. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Frontiers in Microbiology, 7, 1646. https://doi.org/10.3389/FMICB.2016.01646
- Gaur, V. K., Regar, R. K., Dhiman, N., Gautam, K., Srivastava, J. K., Patnaik, S., Kamthan, M., & Manickam, N. (2019). Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresource Technology, 285, 121314. https://doi.org/10.1016/j.biortech.2019.121314
- Ghasemi, A., Moosavi-Nasab, M., Behzadnia, A., & Rezaei, M. (2018). Enhanced biosurfactant production with low-quality date syrup by Lactobacillus rhamnosus using a fed-batch fermentation. Food Science and Biotechnology, 27, 1137–1144. https://doi.org/10.1007/s10068-018-0366-5
- Giri, S. S., Ryu, E. C., Sukumaran, V., & Park, S. C. (2019). Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial Pathogenesis, 132, 66–72. https://doi.org/10.1016/j.micpath.2019.04.035
- Goyal, S., & Singh, J. (2022). Biphasic liquid-liquid extraction of biosurfactant from Lactobacillus delbrueckii. Brazilian Archives of Biology and Technology, 65, 1–11. https://doi.org/10.1590/1678-4324-2022210325
- Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50, 419–424. https://doi.org/10.1111/j.1472-765X.2010.02818.x
- Gudiña, E. J., Teixeira, J. A., & Rodrigues, L. R. (2011). Biosurfactant-producing Lactobacilli: Screening, production profiles, and effect of medium composition. Applied and Environmental Soil Science, 2011, 1–9. https://doi.org/10.1155/2011/201254
- Heinemann, C., Hylckama Vlieg, J. E. T., Janssen, D. B., Busscher, H. J., Mei, H. C., & Reid, G. (2000). Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters, 190, 177–180. https://doi.org/10.1111/J.1574-6968.2000.TB09282.X
- Hentati, D., Chebbi, A., Hadrich, F., Frikha, I., Rabanal, F., Sayadi, S., Manresa, A., & Chamkha, M. (2019). Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicology and Environmental Safety, 167, 441–449. https://doi.org/10.1016/j.ecoenv.2018.10.036
- Heryani, H., & Putra, M. D. (2017). Kinetic study and modeling of biosurfactant production using Bacillus sp. Electronic Journal of Biotechnology, 27, 49–54. https://doi.org/10.1016/J.EJBT.2017.03.005
- Hippolyte, M. T., Augustin, M., Hervé, T. M., Robert, N., & Devappa, S. (2018). Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresources and Bioprocessing, 5(1), 1–16. https://doi.org/10.1186/s40643-018-0234-4
10.1186/s40643-018-0234-4 Google Scholar
- Hu, F., Liu, Y., Lin, J., Wang, W., & Li, S. (2020). Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Applied Microbiology and Biotechnology, 104, 4017–4026. https://doi.org/10.1007/s00253-020-10528-9
- Ibrahim, A. M., Ayoub, M. I., & Awad, A. R. (2020). Effects of Lactobacillus acidophilus and Lactobacillus helveticus on biofilm formation by ESBL-producing uropathogenic Escherichia coli. Egypt. Journal of Medical Microbiology, 29, 163–170. https://doi.org/10.51429/ejmm29321
10.51429/ejmm29321 Google Scholar
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/MOLBEV/MSW054
- Meena, K. R., Dhiman, R., Singh, K., Kumar, S., Sharma, A., Kanwar, S. S., Mondal, R., Das, S., Franco, O. L., & Mandal, A. K. (2021). Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microbial Cell Factories, 20, 1–12. https://doi.org/10.1186/s12934-021-01519-0
- Meylheuc, T., Van Oss, C. J., & Bellon-Fontaine, M. N. (2001). Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. Journal of Applied Microbiology, 91, 822–832. https://doi.org/10.1046/J.1365-2672.2001.01455.X
- Mohanty, S. S., Koul, Y., Varjani, S., Pandey, A., Ngo, H. H., Chang, J. S., Wong, J. W. C., & Bui, X. T. (2021). A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial Cell Factories, 20, 1–13. https://doi.org/10.1186/s12934-021-01613-3
- Montoya Vallejo, C., Flórez Restrepo, M. A., Guzmán Duque, F. L., & Quintero Díaz, J. C. (2021). Production, characterization and kinetic model of biosurfactant produced by lactic acid bacteria. Electronic Journal of Biotechnology, 53, 14–22. https://doi.org/10.1016/j.ejbt.2021.06.001
- Morais, I. M. C., Cordeiro, A. L., Teixeira, G. S., Domingues, V. S., Nardi, R. M. D., Monteiro, A. S., Alves, R. J., Siqueira, E. P., & Santos, V. L. (2017). Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microbial Cell Factories, 16, 1–15. https://doi.org/10.1186/s12934-017-0769-7
- Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1488, 211–218. https://doi.org/10.1016/S1388-1981(00)00124-4
- Mouafi, F. E., Abo Elsoud, M. M., & Moharam, M. E. (2016). Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol Reports, 9, 31–37. https://doi.org/10.1016/j.btre.2015.12.003
- Mouafo, T. H., Mbawala, A., & Ndjouenkeu, R. (2018). Effect of different carbon sources on biosurfactants' production by three strains of Lactobacillus spp. BioMed Research International, 2018, 1–15. https://doi.org/10.1155/2018/5034783
- Nurfarahin, A. H., Mohamed, M. S., & Phang, L. Y. (2018). Culture medium development for microbial-derived surfactants production—An overview. Molecules, 23, 1–26. https://doi.org/10.3390/molecules23051049
- Panjiar, N., Mattam, A. J., Jose, S., Gandham, S., & Velankar, H. R. (2020). Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. Science of the Total Environment, 729, 138933. https://doi.org/10.1016/j.scitotenv.2020.138933
- Phulpoto, I. A., Yu, Z., Hu, B., Wang, Y., Ndayisenga, F., Li, J., Liang, H., & Qazi, M. A. (2020). Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation. Microbial Cell Factories, 19, 1–12. https://doi.org/10.1186/s12934-020-01402-4
- Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., & Rujiravanit, R. (2008). Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technology, 99, 1589–1595. https://doi.org/10.1016/j.biortech.2007.04.020
- Purwasena, I. A., Astuti, D. I., & Utami, S. G. (2020). Nitrogen optimization on rhamnolipid biosurfactant production from Pseudoxanthomonas sp. G3 and its preservation techniques. Sains Malaysiana, 49, 2119–2127. https://doi.org/10.17576/jsm-2020-4909-10
- Saha, D., Hait, M., Patanwar, M., & Tamrakar, A. (2011). Studies on surface tension of selected juice formulation by drop number method using Traube's Stalagmometer technique. Bulletin of Pharmaceutical Research, 1, 1–3. https://doi.org/10.13140/RG.2.1.1864.0080
10.13140/RG.2.1.1864.0080 Google Scholar
- Sambanthamoorthy, K., Feng, X., Patel, R., Patel, S., & Paranavitana, C. (2014). Antimicrobial and antibiofilm potential of biosurfactants isolated from Lactobacilli against multi-drug-resistant pathogens. BMC Microbiology, 14, 1–9. https://doi.org/10.1186/1471-2180-14-197
- Santos, D. K. F., Brandão, Y. B., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Santos, V. A., & Sarubbo, L. A. (2014). Optimization of cultural conditions for biosurfactant production from Candida lipolytica. Biocatalysis and Agricultural Biotechnology, 3, 48–57. https://doi.org/10.1016/J.BCAB.2014.02.004
10.1016/j.bcab.2014.02.004 Google Scholar
- Satpute, S. K., Kulkarni, G. R., Banpurkar, A. G., Banat, I. M., Mone, N. S., Patil, R. H., & Cameotra, S. S. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology, 56, 1140–1158. https://doi.org/10.1002/jobm.201600143
- Sharma, D., Saharan, B. S., Chauhan, N., Procha, S., & Lal, S. (2015). Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springerplus, 4, 1–14. https://doi.org/10.1186/2193-1801-4-4
- Sharma, S., Tiwari, P., & Pandey, L. (2022). Optimization of culture conditions for the production of biosurfactants. In L. Pandey, & P. Tiwari (Eds.), Microbial enhanced oil recovery. Green energy and technology. Springer. https://doi.org/10.1007/978-981-16-5465-7_7
10.1007/978-981-16-5465-7_7 Google Scholar
- Sharma, V., Singh, D., Manzoor, M., Banpurkar, A. G., Satpute, S. K., & Sharma, D. (2021). Characterization and cytotoxicity assessment of biosurfactant derived from Lactobacillus pentosus NCIM 2912. Brazilian Journal of Microbiology, 14, 327–340. https://doi.org/10.1007/s42770-021-00654-5
10.1007/s42770?021?00654?5 Google Scholar
- Singh, P., Patil, Y., & Rale, V. (2019). Biosurfactant production: emerging trends and promising strategies. Journal of Applied Microbiology, 126, 2–13. https://doi.org/10.1111/jam.14057
- Techaoei, S., Lumyong, S., Prathumpai, W., Santiarwar, D., & Leelapornp, P. (2011). Screening characterization and stability of biosurfactant produced by Pseudomonas aeruginosa SCMU106 isolated from soil in Northern Thailand. Asian Journal of Biological Sciences, 4, 340–351. https://doi.org/10.3923/AJBS.2011.340.351
- Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102, 3366–3372. https://doi.org/10.1016/j.biortech.2010.11.071
- Yaraguppi, D. A., Bagewadi, Z. K., Muddapur, U. M., & Mulla, S. I. (2020). Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2. Journal of Petroleum Exploration and Production Technologies, 10, 2483–2498. https://doi.org/10.1007/s13202-020-00866-9