Delaying postharvest senescence and improving antioxidant capacity of kiwifruits cv. Hayward by preharvest selenium application
Mahshid Ghafouri
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Search for more papers by this authorCorresponding Author
Farhang Razavi
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Correspondence
Farhang Razavi, Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
Email: [email protected]
Search for more papers by this authorMasoud Arghavani
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Search for more papers by this authorEbrahim Abedi Gheshlaghi
Department of Horticulture Crops Research, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
Search for more papers by this authorMahshid Ghafouri
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Search for more papers by this authorCorresponding Author
Farhang Razavi
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Correspondence
Farhang Razavi, Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
Email: [email protected]
Search for more papers by this authorMasoud Arghavani
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
Search for more papers by this authorEbrahim Abedi Gheshlaghi
Department of Horticulture Crops Research, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
Search for more papers by this authorAbstract
The present research was conducted to investigate the efficacy of preharvest selenium (Se) application as foliar spraying of 0, 1, 2, and 3 mg L−1 Se at 110, 125, and 140 days after full bloom on senescence and nutritional quality of kiwifruit during storage at 1°C for 90 days. Here, we found that 2 mg L−1 Se spraying remarkably delayed the senescence of kiwifruit by preserving ascorbic acid accumulation while enhancing superoxide dismutase, catalase, and ascorbate peroxidase enzymes activity. In addition, promoting phenols and flavonoid accumulation and DPPH scavenging capacity in kiwifruit during postharvest cold storage could be ascribed to higher phenylalanine ammonia-lyase along with lower polyphenol oxidase enzyme activity. By endogenous Se accumulation, kiwifruits exhibited lower electrolyte leakage and malondialdehyde accumulation demonstrating protective membrane integrity. These findings suggest that delaying senescence while improving the antioxidant capacity of kiwifruit by Se foliar spraying could be ascribed to higher endogenous Se accumulation accompanied by enhancing ROS scavenging enzymes activity and promoting phenylpropanoid pathway activity.
Novelty impact statement
- Se enrichment of fruits and vegetables by foliar spraying exhibits great benefits for human health while avoiding postharvest losses.
- Preharvest Se application in the present study significantly increased the antioxidant capacity and endogenous Se accumulation and delayed senescence of kiwifruit during cold storage.
- The results suggest that the preharvest 2 mg L−1 Se spraying may be a beneficial strategy for supplying kiwifruit with higher bioactive molecules accumulation which is crucial for consumer health.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Aghdam, M. S., & Bodbodak, S. (2013). Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae, 156, 73–85. https://doi.org/10.1016/j.scienta.2013.03.028
- Allai, F. M., Majeed, D., Gul, K., Parveen, S. A., & Jabeen, A. (2020). Factors affecting the postharvest quality of fruits. In B. N. Dar & S. A. Mir (Eds.), Emerging technologies for shelf-life enhancement of fruits (pp. 38–65). Apple Academic Press. https://doi.org/10.1201/9780429264481
10.1201/9780429264481-2 Google Scholar
- Babalar, M., Mohebbi, S., Zamani, Z., & Askari, M. A. (2019). Effect of foliar application with sodium selenite on selenium biofortification and fruit quality maintenance of ‘starking delicious’ apple during storage. Journal of the Science of Food and Agriculture, 99(11), 5149–5156. https://doi.org/10.1002/jsfa.9761
- Barman, K., Siddiqui, M. W., Patel, V. B., & Prasad, M. (2014). Nitric oxide reduces pericarp browning and preserves bioactive antioxidant in litchi. Scientia Horticulturae, 171, 71–77. https://doi.org/10.1016/j.scienta.2014.03.036
- Birringer, M., Pilawa, S., & Flohe, L. (2002). Trends in selenium biochemistry. Natural Product Reports, 19, 693–718. https://doi.org/10.1039/b205802m
- Bittman, S., Buckley, W. L., Zaychuk, K., & Brown, E. A. P. (1997). Seed coating for enhancing the level of se in crops. Patent US 6058649.
- Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agriculture and Food Chemistry, 54, 1680–1686. https://doi.org/10.1021/jf0527448
- Cheng, S., Wei, B., Zhou, Q., Tan, D., & Ji, S. (2015). 1-Methylcyclopropene alleviates chilling injury by regulating energy metabolism and fatty acid content in ‘Nanguo’ pears. Postharvest Biology and Technology, 109, 130–136. https://doi.org/10.1016/j.postharvbio.2015.05.012
- Chomchan, R., Siripongvutikorn, S., & Puttarak, P. (2017). Selenium bio-fortification: An alternative to improve phytochemicals and bioactivities of plant foods. Functional Foods in Health and Disease, 7(4), 263–279. https://doi.org/10.31989/ffhd.v7i4.323
- Dehghan, G., & Khoshkam, Z. (2012). Tin (II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry, 131(2), 422–426. https://doi.org/10.1016/j.foodchem.2011.08.074
- Dhur, A., Galan, P., & Hercberg, S. (1990). Relationship between selenium, immunity and resistance against infection. Comparative Biochemistry and Physiology, 96(2), 271–280. https://doi.org/10.1016/0742-8413(90)90007-v
- Djujic, I. S., Jozanov-Stankov, O. N., Milovac, M., Jankovic, V., & Djermanovic, V. (2000). Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products. Biological Trace Element Research, 77(3), 273–285. https://doi.org/10.1385/BTER:77:3:273
- Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557–562. https://doi.org/10.1016/j.foodchem.2008.08.025
- Elham, Z., Motty, A. E., & Orabi, S. A. (2013). The beneficial effects of using zinc, yeast and selenium on yield, fruit quality and antioxidant defense systems in navel orange trees grown under newly reclaimed sandy soil. Journal of Applied Sciences Research, 9(10), 6487–6497.
- Fageria, N. K. (2009). The use of nutrients in crop plants. CRC Press, Francis and Taylor Group. https://doi.org/10.1201/9781420075113
- Fallah, S., Ganji, Z., & Pessarakli, M. (2022). Growth and shelf life of basil in response to selenium fertilization. Journal of Plant Nutrition, 1–12, 2534–2545. https://doi.org/10.1080/01904167.2022.2064296
- FAO. (2020). FAOSTAT, FAO statiscal databases. http://faostat.fao.org
- Fen, R. W., & Wei, C. Y. (2012). Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil and Environment, 58, 105–110. https://doi.org/10.17221/162/2011-PSE
- Ferguson, A. R., & Ferguson, L. R. (2003). Are kiwifruit really good for you? Acta Horticulturae, 610, 131–138. https://doi.org/10.17660/ActaHortic.2003.610.16
10.17660/ActaHortic.2003.610.16 Google Scholar
- Ferrarese, M., Sourestani, M. M., Quattrini, E., Schiavi, M., & Ferrante, A. (2012). Biofortification of spinach plants applying selenium in the nutrient solution of floating system. Vegetable Crops Research Bulletin, 76, 127–136. https://doi.org/10.2478/v10032-012-0009-y
- Finley, J. W. (2007). Increased intakes of selenium-enriched foods may benefit human health. The Journal of Science of Food and Agriculture, 87, 1620–1629. https://doi.org/10.1002/jsfa.2943
- Ghasemnezhad, M., Nezhad, M. A., & Gerailoo, S. (2011). Changes in postharvest quality of loquat (Eriobotrya japonica) fruits influenced by chitosan. Horticulture, Environment, and Biotechnology, 52(1), 40–45. https://doi.org/10.1007/s13580-011-0028-5
- Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Archives Biochemistry Biophysics, 125, 850–857. https://doi.org/10.1016/0003-9861(68)90654-1
- Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Delia Hernández-Fuentes, A., Cabrera de la Fuente, M., Valdés-Reyna, J., & Juárez-Maldonado, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10), 355. https://doi.org/10.3390/plants8100355
- Hu, Q., Xu, J., & Pang, G. (2003). Effects of selenium on the yield and quality of green tea leaves harvested in early spring. Journal of Agricultural Food and Chemistry, 51(11), 3379–3381. https://doi.org/10.1021/jf0341417
- Hu, W., Su, Y., Zhou, J., Zhu, H., Guo, J., Huo, H., & Gong, H. (2022). Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Scientia Horticulturae, 249, 110776. https://doi.org/10.1016/j.scienta.2021.110776
- Hunter, D. C., Greenwood, J., Zhang, J., & Skinner, M. A. (2011). Antioxidant and ‘natural protective’ properties of kiwifruit. Current Topics in Medicinal Chemistry, 11(14), 1811–1820. https://doi.org/10.2174/156802611796235134
- Kaijv, M., Sheng, L., & Chao, C. (2006). Antioxidation of flavonoids of rhizome. Food Science, 27, 110–115.
- Kancheva, V. D. (2009). Phenolic antioxidants-radical-scavenging and chain-breaking activity: A comparative study. European Journal of Lipid Science and Technology, 111(11), 1072–1089. https://doi.org/10.1002/ejlt.200900005
- Karimi, R., Ghabooli, M., Rahimi, J., & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L, cv. Sultana under salt stress. Journal of Plant Nutrition, 43(14), 2226–2242. https://doi.org/10.1080/01904167.2020.1766072
- Khlebnikov, A. I., Schepetkin, I. A., Domina, N. G., Kirpotina, L. N., & Quinn, M. T. (2007). Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. National Library of Medicine, 15(4), 1749–1770. https://doi.org/10.1016/j.bmc.2006.11.037
- Lattanzio, V., Cardinali, A., & Linsalata, V. (2012). Plant phenolics: A biochemical and physiological perspective. Recent Advances in Polyphenol Research, 3, 1–39. https://doi.org/10.1002/9781118299753.ch1
- Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2
- Liang, N. N., Pan, Q. H., He, F., Wang, J., Reeves, M. J., & Duan, C. Q. (2013). Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. Journal of Agricultural and Food Chemistry, 6(25), 6016–6027. https://doi.org/10.1021/jf3052658
- Lim, C. C., Arora, R., & Townssenal, E. C. (1998). Comparing comports and Richards function to estimate freezing injury in rhododendron using electrolyte leakage. Journal of the American Society for Horticultural Science, 123(2), 246–252. https://doi.org/10.21273/JASHS.123.2.246
- Luo, H., Wang, F., Bai, Y., Chen, T., & Zheng, W. (2012). Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids and Surfaces B: Biointerfaces, 94, 304–308.
- Mackerness, S. A. H., John, C. F., Jordan, B., & Thomas, B. (2001). Early signaling components in ultraviolet-B responses: Distinct role for different reactive oxygen species and nitric oxide. FEBS Letters, 489, 237–242. https://doi.org/10.1016/s0014-5793(01)02103-2
- Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77, 242–248. https://doi.org/10.1016/j.envexpbot.2011.12.001
- Malorgio, F., Diaz, K., Ferrante, A., Mensuali, A., & Pezzarossa, B. (2009). Effects of selenium addition on minimally processed leafy vegetables grown in floating system. Journal of Agricultural Food and Chemistry, 89(13), 2243–2251. https://doi.org/10.1002/jsfa.3714
- Marrs, K. A., & Walbot, V. (1997). Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiology, 113(1), 93–102. https://doi.org/10.1104/pp.113.1.93
- Meng, X., Li, B., Liu, J., & Tian, S. (2007). Physiological responses and quality attributes of table grape fruit to chitosan pre-harvest spray and postharvest coating during storage. Food Chemistry, 106(2), 501–508. https://doi.org/10.1016/j.foodchem.2007.06.012
- Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.
- Molaei, S., Rabiei, V., Soleimani, A., & Razavi, F. (2021). Exogenous application of glycine betaine increases the chilling tolerance of pomegranate fruits cv. Malase Saveh during cold storage. Journal of Food Processing and Preservation, 45(4), e15315. https://doi.org/10.1111/jfpp.15315
- Mozafariyan, M., Pessarakli, M., & Saghafi, K. (2017). Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. Journal of Plant Nutrition, 40(2), 139–144. https://doi.org/10.1080/01904167.2016.1201500
- Nguyen, T. B. T., Ketsa, S., & van Doorn, W. G. (2003). Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology and Technology, 30, 187–193. https://doi.org/10.1016/S0925-5214(03)00103-0
- Olivas, G. I., Mattinson, D. S., & BarbosaCánovas, G. V. (2007). Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biology and Technology, 45(1), 89–96. https://doi.org/10.1016/j.postharvbio.2006.11.018
- Palafox-Carlos, H., Yahia, E. M., Islas-Osuna, M. A., Gutierrez-Martinez, P., RoblesSánchez, M., & González-Aguilar, G. A. (2012). Effect of ripeness stage of mangofruit (Mangifera indica L, cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, 135, 7–13. https://doi.org/10.1016/j.scienta.2011.11.027
- Pan, Y., Zhang, S., Yuan, M., Song, H., Wang, T., Zhang, W., & Zhang, Z. (2019). Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage. Food Science and Nutrition, 7(3), 1123–1130. https://doi.org/10.1002/fsn3.957
- Pennanen, A., Tailin, X., & Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany, 76(1–2), 66–76.
- Perkin-Veazie, P. (1995). Growth and ripening of strawberry fruit. Horticultural Reviews, 17, 267–297. https://doi.org/10.1002/9780470650585.ch8
10.1002/9780470650585.ch8 Google Scholar
- Pezzarossa, B., Remorini, D., Gentile, M. L., & Massai, R. (2012). Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. Journal of the Science of Food and Agriculture, 92, 781–786. https://doi.org/10.1002/jsfa.4644
- Pezzarossa, B., Rosellini, I., Borghesi, E., Tonutti, P., & Malorgio, F. (2014). Effects of se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Scientia Horticulturae, 165, 106–110. https://doi.org/10.1016/j.scienta.2013.10.029
- Poggi, V., Arcioni, A., Filippini, P., & Pifferi, P. G. (2000). Foliar application of selenite to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. Journal of Agricultural and Food Chemistry., 48(10), 4749–4751. https://doi.org/10.1021/jf000368f
- Pokorný, J. (2007). Are natural antioxidants better-and safer-than synthetic antioxidants? European Journal of Lipid Science and Technology, 109(6), 629–642. https://doi.org/10.1002/ejlt.200700064
- Radotic, K., Ducic, T., & Mutavdzic, D. (2000). Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environmental and Experimental Botany, 44(2), 105–113. https://doi.org/10.1016/s0098-8472(00)00059-9
- Rios, J. J., Blasco, B., Cervilla, L. M., Rosales, M. A., Sanchez-Rodriguez, E., Romero, L., & Ruiz, J. M. (2009). Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology, 154, 107–116. https://doi.org/10.1111/j.1744-7348.2008.00276.x
- Rios, J. J., Rosales, M. A., Blasco, B., Cervilla, L. M., Romero, L., & Ruiz, J. M. (2010). Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food Agriculture, 90(11), 1914–1919. https://doi.org/10.1002/jsfa.4032
- Robbins, R. J., Keck, A. S., Banuelos, G., & Finley, J. W. (2005). Cultivation conditions and selenium fertilizationalter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. Journal of Medicinal Food, 8, 204–214. https://doi.org/10.1089/jmf.2005.8.204
- Rodrigues, A. S., Pérez-Gregorio, M. R., García-Falcón, M. S., Simal-Gándara, J., & Almeida, D. P. (2010). Effect of post-harvest practices on flavonoid content of red and white onion cultivars. Food Control, 21(6), 878–884. https://doi.org/10.1016/j.foodcont.2009.12.003
- Rui, H., Cao, S., Shang, H., Jin, P., Wang, K., & Zheng, Y. (2010). Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Journal of the Science of Food and Agriculture, 90(9), 1557–1561. https://doi.org/10.1002/jsfa.3993
- Sajedi, N. A., Ardakani, M. R., Naderi, A., Madani, H., & Boojar, M. M. A. (2009). Response of maize to nutrients foliar application under water deficit stress conditions. Journal of agricultural and biological. Science, 4(3), 242–248. https://doi.org/10.3844/ajabssp.2009
10.3844/ajabssp.2009 Google Scholar
- Savvas, D., Ntatsi, G., & Passam, H. C. (2008). Plant nutrition and physiological disorders in greenhouse grown tomato, pepper and eggplant. European Journal of Plant Science and Biotechnology, 2(1), 46–61.
- Schiavon, M., Dall'acqua, S., Mietto, A., Pilon-Smits, E. A. H., Sambo, P., Masi, A., & Malagoli, M. (2013). Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry, 61(44), 10542–10554. https://doi.org/10.1021/jf4031822
- Shah, S., & Hashmi, M. S. (2020). Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Environment and Biotechnology, 61, 279–289. https://doi.org/10.1007/s13580-019-00224-7
- Sharom, M., Willemot, C., & Thompson, J. E. (1994). Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology, 105(1), 305–308. https://doi.org/10.1104/pp.105.1.305
- Siboza, X. I., Bertling, I., & Odindo, A. O. (2014). Salicylic acid and methyl jasmonate improvechilling tolerance in cold-stored lemon fruit (Citrus Limon). Journal of Plant Physiology, 171(18), 1722–1731. https://doi.org/10.1016/j.jplph.2014.05.012
- Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
- Sogvar, O. B., Rabiei, V., Razavi, F., & Gohari, G. (2020). Phenylalanine alleviates postharvest chilling injury of plum fruit by modulating antioxidant system and enhancing the accumulation of phenolic compounds. Food Technology and Biotechnology, 58(4), 433–444. https://doi.org/10.17113/ftb.58.04.20.6717
- Tavarini, S., Innocenti, E. D., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107, 282–288. https://doi.org/10.1016/j.foodchem.2007.08.015
- Terry, N., Zayed, A. M., De Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology., 51, 401–432. https://doi.org/10.1146/annurev.arplant.51.1.401
- Turakainen, M., Hartikainen, H., & Seppänen, M. M. (2004). Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52(17), 5378–5382. https://doi.org/10.1021/jf040077x
- Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martinez, C. (2006). Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016
- Vogler, B. K., & Ernst, E. (1999). Aloe vera: A systematic review of its clinical effectiveness. British Journal of General Practice, 49(447), 823–828.
- Wang, J. M., He, L. H., Jiang, Y., Yang, J., & Ji, S. (2020). Glycine betaine alleviated peel browning in cold-stored ‘Nanguo’ pears during shelf life by regulating phenylpropanoid and soluble sugar metabolisms. Scientia Horticulturae, 262(1), 109100. https://doi.org/10.1016/j.scienta.2019.109100
- Wang, L. S., Farooq, U., Xie, B., Hu, S., Jin, P., & Zheng, Y. (2019). Biochemical and molecular effects of glycine betaine treatment on membrane fatty acid metabolism in cold stored peaches. Postharvest Biology and Technology, 154, 58–69. https://doi.org/10.1016/j.postharvbio.2019.04.007
- Wills, R., McGlasson, B., Graham, D., & Joyce, D. (2007). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals ( 5nd ed.). Cabi Publishing.
10.1079/9781845932275.0013 Google Scholar
- Xue, T., Hartikainen, H., & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237, 55–61.
- Zahedi, S. M., Hosseini, M. S., Meybodi, N. D. H., & da Silva, J. A. T. (2019). Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. South African Journal of Botany, 124, 350–358. https://doi.org/10.1016/j.sajb.2019.05.019
- Zasoski, R. J., & Burau, R. G. (1977). A rapid nitric perchloric acid digestion method for multielements tissue analysis. Communications in Soil Science and Plant Analysis, 8(5), 425–436. https://doi.org/10.1080/00103627709366735
- Zhang, Z., Huber, D. J., & Rao, J. (2013). Antioxidant systems of ripening avocado (Persea americana mill.) fruit following treatment at the pre climacteric stage with aqueous 1-methylcyclopropene. Postharvest Biology Technology, 76, 58–64. https://doi.org/10.1016/j.postharvbio.2012.09.003
- Zhao, Y., Wu, P., Wang, Y., & Feng, H. (2013). Different approaches for selenium biofortification of pear-jujube (Zizyphus jujuba cv. Lizao) and associated effects on fruit quality. Journal of food. Agriculture and Environment, 11(2), 529–534.
- Zhao-Liang, L., Yong-Bing, Y., Cheng-Lian, L., & Zong-Xun, C. (1989). Regulation of antioxidant enzymes by salicylic acid in cucumber leaves. Journal of Integrative Plant Biology, 40(4), 356–361.
- Zhu, S., Liang, Y., Gao, D., An, X., & Kong, F. (2017). Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Scientia Horticulturae, 218(14), 87–94. https://doi.org/10.1016/j.scienta.2017.02.025
- Zhu, X., Wang, Q. M., Cao, J. K., & Jiane, W. (2008). Effects of chitosan coating on postharvest quality of mango (Mangifera indica L. cv. Tainong) fruits. Journal of Food Processing and Preservation, 32(5), 770–784. https://doi.org/10.1111/j.1745-4549.2008.00213.x
- Zhu, Z., Chen, Y. L., Zhang, X. J., & Li, M. (2016). Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Scientia Horticulturae, 198, 304–310. https://doi.org/10.1016/j.scienta.2015.12.002
- Zivanovic, S., Buescher, R. W., & Kim, K. S. (2000). Textural changes in mushroom (Agaricus bisporus) associated tissue ultrastructure and composition. Journal of Food Science, 65(8), 1404–1408. https://doi.org/10.1111/j.1365-2621.2000.tb10621.x
- Zucker, M. (1968). Sequential induction of phenylalanine ammonia-lyase and a lyase-inactivating system in potato tuber disks. Plant Physiology, 43(3), 365–374.