Foam mat dried tamarillo powder: Effect of foaming agents on drying kinetics, physicochemical and phytochemical properties
Shubham Rohilla
Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, India
Search for more papers by this authorCorresponding Author
Charu Lata Mahanta
Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, India
Correspondence
Charu Lata Mahanta, Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, India.
Email: [email protected]
Search for more papers by this authorShubham Rohilla
Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, India
Search for more papers by this authorCorresponding Author
Charu Lata Mahanta
Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, India
Correspondence
Charu Lata Mahanta, Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, India.
Email: [email protected]
Search for more papers by this authorAbstract
Egg albumin (ALB), whey protein concentrate (WPC), soy protein concentrate (SPC), and gelatin (GEL) at 5% and 10% levels were used to develop foam mat dried tamarillo powder. The logarithmic model gave the best fit for drying of the foams. Powder samples with SPC and WPC as the foaming agents at 10% level possessed better powder quality, and least effective was gelatin. Increase in concentration of the four foaming agents to 10% improved the retention of phytochemical components in the powder, especially WPC. Highest concentration of gallic acid (890 μg/g), chlorogenic acid (403 μg/g), caffeic acid (85 μg/g) and p-coumaric acid (297 μg/g) among the phenolic acids, and β-cryptoxathin (27.47 μg/g) and β-carotene (19.47 μg/g) were determined in WPC-10P. Foam stability and powder properties of WPC were the best. This study will be directly helpful in the development and commercialization of novel food products using tamarillo fruit powder.
Novelty impact statement
Tamarillo fruit is seasonal in nature and foam mat drying, which is a very economical and convenient way for processing of the pulp and puree into powder, can be used to process the fruit. The findings of this study revealed that foam mat dried powder of tamarillo made with 10% WPC maintains more phytochemicals and has good physicochemical properties. Tamarillo powder has high potential to be used as a reconstituted drink in instant soup or as a food additive in novel foods.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data presented in this study are available on request from the corresponding author.
Supporting Information
Filename | Description |
---|---|
jfpp17164-sup-0001-Tables.docxWord 2007 document , 18.9 KB |
Tables S1-S5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abbasi, E., & Azizpour, M. (2016). Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT—Food Science and Technology, 68, 105–110. https://doi.org/10.1016/j.lwt.2015.12.004
- Acosta-Quezada, P. G., Raigón, M. D., Riofrío-Cuenca, T., García-Martínez, M. D., Plazas, M., Burneo, J. I., Figueroa, J. G., Vilanova, S., & Prohens, J. (2015). Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chemistry, 169, 327–335. https://doi.org/10.1016/j.foodchem.2014.07.152
- Adetoro, A. O., Opara, U. L., & Fawole, O. A. (2020). Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder. Foods, 9(10), 1388. https://doi.org/10.3390/foods9101388
- Al Mubarak, A., Hamid, N., Kam, R., & Chan, H. (2019). The effects of spray drying conditions on the physical and bioactive properties of New Zealand Tamarillo (Solanum betaceum) powder. Acta Scientific Nutritional Health, 3(12), 121–131. https://doi.org/10.31080/asnh.2019.03.0545
10.31080/ASNH.2019.03.0545 Google Scholar
- Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2016). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering, 39(6), 692–701. https://doi.org/10.1111/jfpe.12261
- Ayetigbo, O., Latif, S., Abass, A., & Müller, J. (2021). Drying kinetics and effect of drying conditions on selected physicochemical properties of foam from yellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127, 454–464. https://doi.org/10.1016/j.fbp.2021.04.005
- Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O., & Tijani, K. O. (2019). Bioactive compounds' contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18(2), 120–126. https://doi.org/10.1016/j.jssas.2017.03.002
10.1016/j.jssas.2017.03.002 Google Scholar
- Benković, M., Pižeta, M., Tušek, A. J., Jurina, T., Kljusurić, J. G., & Valinger, D. (2019). Optimization of the foam mat drying process for production of cocoa powder enriched with peppermint extract. LWT—Food Science and Technology, 115, 108440. https://doi.org/10.1016/j.lwt.2019.108440
- Branco, I. G., Kikuchi, T. T., Argandoña, E. J. S., Moraes, I. C. F., & Haminiuk, C. W. I. (2016). Drying kinetics and quality of uvaia (Hexachlamys edulis (O. Berg)) powder obtained by foam-mat drying. International Journal of Food Science & Technology, 51(7), 1703–1710. https://doi.org/10.1111/ijfs.13145
- Britten, M., & Lavoie, L. (1992). Foaming properties of proteins as affected by concentration. Journal of Food Science, 57(5), 1219–1241. https://doi.org/10.1111/j.1365-2621.1992.tb11303.x
- Chandrasekar, V., Gabriela, J. S., Kannan, K., & Sangamithra, A. (2015). Effect of foaming agent concentration and drying temperature on physicochemical and antimicrobial properties of foam mat dried powder. Asian Journal of Dairy Food and Research, 34, 39–43. https://doi.org/10.5958/0976-0563.2015.00008.1
10.5958/0976-0563.2015.00008.1 Google Scholar
- Chaux-Gutiérrez, A. M., Pérez-Monterroza, E. J., Telis, V. R. N., & Mauro, M. A. (2017). The physical and morphological characteristics of mango powder (Mangifera indica L. cv Tommy Atkins) produced by foam mat drying. Food Biophysics, 12(1), 69–77. https://doi.org/10.1007/s11483-016-9464-1
- Chaux-Gutiérrez, A. M., Santos, A. B., Granda-Restrepo, D. M., & Mauro, M. A. (2017). Foam mat drying of mango: Effect of processing parameters on the drying kinetic and product quality. Drying Technology, 35(5), 631–641. https://doi.org/10.1080/07373937.2016.1201486
- Das Purkayastha, M., Nath, A., Deka, B. C., & Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of Food Science and Technology, 50(4), 642–653. https://doi.org/10.1007/s13197-011-0397-x
- de Carvalho, T. I. M., Nogueira, T. Y. K., Mauro, M. A., Gómez-Alonso, S., Gomes, E., Da-Silva, R., Hermosín-Gutiérrez, I., & Lago-Vanzela, E. S. (2017). Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Research International, 102, 32–42. https://doi.org/10.1016/j.foodres.2017.09.068
- de Carvalho Tavares, I. M., Sumere, B. R., Gómez-Alonso, S., Gomes, E., Hermosín-Gutiérrez, I., Da-Silva, R., & Lago-Vanzela, E. S. (2020). Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Research International, 128, 108750. https://doi.org/10.1016/j.foodres.2019.108750
- de Cól, C. D., Tischer, B., Flôres, S. H., & Rech, R. (2021). Foam-mat drying of bacaba (Oenocarpus bacaba): Process characterization, physicochemical properties, and antioxidant activity. Food and Bioproducts Processing, 126, 23–31. https://doi.org/10.1016/j.fbp.2020.12.004
- Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018). Heat and mass transfer modeling during foam-mat drying of lime juice as affected by different ovalbumin concentrations. Journal of Food Engineering, 238, 164–177. https://doi.org/10.1016/j.jfoodeng.2018.06.014
- Diep, T. T., Pook, C., & Yoo, M. J. Y. (2020). Physicochemical properties and proximate composition of tamarillo (Solanum betaceum Cav.) fruits from New Zealand. Journal of Food Composition and Analysis, 92, 103563. https://doi.org/10.1016/j.jfca.2020.103563
- Espín, S., González-Manzano, S., Taco, V., Poveda, C., Ayuda-Durán, B., González-Paramas, A. M., & Santos-Buelga, C. (2016). Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chemistry, 194, 1073–1080. https://doi.org/10.1016/j.foodchem.2015.07.131
- Falade, K. O., & Adeniyi, O. G. (2021). Instant soups from cowpea varieties using foam-mat drying. LWT—Food Science and Technology, 151, 112191. https://doi.org/10.1016/j.lwt.2021.112191
- Franco, T. S., Perussello, C. A., Ellendersen, L. N., & Masson, M. L. (2017). Effect of process parameters on foam mat drying kinetics of yacon (Smallanthus sonchifolius) and thin-layer drying modeling of experimental data. Journal of Food Process Engineering, 40(1), e12264. https://doi.org/10.1111/jfpe.12264
- García, J. M., Giuffrida, D., Dugo, P., Mondello, L., & Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702–709. https://doi.org/10.1016/j.powtec.2018.08.061
- Gomes, J. V. P., de Oliveira, L. A., Pereira, S. M. S., da Conceição, A. R., Anunciação, P. C., de Souza, E. C. G., Perrone, Í. T., da Silva Junqueira, M., Pinheiro Sant'Ana, H. M., & Della Lucia, C. M. (2021). Comparison of bioactive compounds and nutrient contents in whey protein concentrate admixture of turmeric extract produced by spray drying and foam mat drying. Food Chemistry, 345, 128772. https://doi.org/10.1016/j.foodchem.2020.128772
- Goula, A. M., Karapantsios, T. D., Achilias, D. S., & Adamopoulos, K. G. (2008). Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85(1), 73–83. https://doi.org/10.1016/j.jfoodeng.2007.07.015
- Hardy, Z., & Jideani, V. A. (2017). Foam-mat drying technology: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2560–2572. https://doi.org/10.1080/10408398.2015.1020359
- Henry, L. K., Puspitasari-Nienaber, N. L., Jarén-Galán, M., van Breemen, R. B., Catignani, G. L., & Schwartz, S. J. (2000). Effects of ozone and oxygen on the degradation of carotenoids in an aqueous model system. Journal of Agricultural and Food Chemistry, 48(10), 5008–5013. https://doi.org/10.1021/jf000503o
- Hossain, M. A., Mitra, S., Belal, M., & Zzaman, W. (2021). Effect of foaming agent concentration and drying temperature on biochemical properties of foam mat dried tomato powder. Food Research, 5(2), 291–297. https://doi.org/10.26656/fr.2017.5(1).372
10.26656/fr.2017.5(1).372 Google Scholar
- Hsu, B. Y., Pu, Y. S., Inbaraj, B. S., & Chen, B. H. (2012). An improved high performance liquid chromatography–diode array detection–mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum. Journal of Chromatography B, 899, 36–45. https://doi.org/10.1016/j.jchromb.2012.04.034
- Kandasamy, P., Varadharaju, N., Kalemullah, S., & Maladhi, D. (2014). Optimization of process parameters for foam-mat drying of papaya pulp. Journal of Food Science and Technology, 51(10), 2526–2534. https://doi.org/10.1007/s13197-012-0812-y
- Karim, A. A., & Wai, C. C. (1999). Foam-mat drying of starfruit (Averrhoa carambola L.) puree. Stability and air drying characteristics. Food Chemistry, 64(3), 337–343. https://doi.org/10.1016/S0308-8146(98)00119-8
- Li, T. S., Sulaiman, R., Rukayadi, Y., & Ramli, S. (2021). Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids, 116, 106492. https://doi.org/10.1016/j.foodhyd.2020.106492
- Link, J. V., Tribuzi, G., & Laurindo, J. B. (2017). Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT—Food Science and Technology, 84, 717–725. https://doi.org/10.1016/j.lwt.2017.06.045
- Lobo, F. A., Nascimento, M. A., Domingues, J. R., Falcão, D. Q., Hernanz, D., Heredia, F. J., & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chemistry, 221, 258–266. https://doi.org/10.1016/j.foodchem.2016.10.080
- Lomakina, K., & Mikova, K. (2006). A study of the factors affecting the foaming properties of egg white—A review. Czech Journal of Food Sciences, 24(3), 110–118. https://doi.org/10.17221/3305-cjfs
- Marboh, V., & Mahanta, C. L. (2020). Characterisation and antioxidant activity of sohphlang (Flemingia vestita), a tuberous crop. Journal of Food Science and Technology, 57(10), 3533–3544. https://doi.org/10.1007/s13197-020-04344-2
- Marinova, K. G., Basheva, E. S., Nenova, B., Temelska, M., Mirarefi, A. Y., Campbell, B., & Ivanov, I. B. (2009). Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids, 23(7), 1864–1876. https://doi.org/10.1016/j.foodhyd.2009.03.003
- Mertz, C., Brat, P., Caris-Veyrat, C., & Gunata, Z. (2010). Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 119(2), 653–659. https://doi.org/10.1016/j.foodchem.2009.07.009
- Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT—Food Science and Technology, 88, 80–86. https://doi.org/10.1016/j.lwt.2017.08.032
- Orqueda, M. E., Zampini, I. C., Torres, S., Alberto, M. R., Ramos, L. L. P., Schmeda-Hirschmann, G., & Isla, M. I. (2017). Chemical and functional characterization of skin, pulp and seed powder from the Argentine native fruit mistol (Ziziphus mistol). Effects of phenolic fractions on key enzymes involved in metabolic syndrome and oxidative stress. Journal of Functional Foods, 37, 531–540. https://doi.org/10.1016/j.jff.2017.08.020
- Prohens, J., & Nuez, F. (2000). The tamarillo (Cyphomandra betacea) a review of a promising small fruit crop. Small Fruits Review, 1(2), 43–68. https://doi.org/10.1300/J301v01n02
10.1300/J301v01n02_06 Google Scholar
- Qadri, O. S., & Srivastava, A. K. (2014). Effect of microwave power on foam-mat drying of tomato pulp. Agricultural Engineering International: CIGR Journal, 16(3), 238–244.
- Ragaee, S., Seetharaman, K., & Abdel-Aal, E. S. M. (2014). The impact of milling and thermal processing on phenolic compounds in cereal grains. Critical Reviews in Food Science and Nutrition, 54(7), 837–849. https://doi.org/10.1080/10408398.2011.610906
- Ramakrishnan, Y., Adzahan, N. M., Yusof, Y. A., & Muhammad, K. (2018). Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406–414. https://doi.org/10.1016/j.powtec.2017.12.018
- Rohilla, S., & Mahanta, C. L. (2021). Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. Journal of Food Measurement and Characterization, 15(2), 1763–1773. https://doi.org/10.1007/s11694-020-00751-3
- Sangamithra, A., Sivakumar, V., Kannan, K., & John, S. G. (2015). Foam-mat drying of muskmelon. International Journal of Food Engineering, 11(1), 127–137. https://doi.org/10.1515/ijfe-2014-0139
- Santhalakshmy, S., Bosco, S. J. D., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43. https://doi.org/10.1016/j.powtec.2015.01.016
- Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2017). Effect of carrier agents on flowability and microstructural properties of foam-mat freeze dried date powder. Journal of Food Engineering, 215, 33–43. https://doi.org/10.1016/j.jfoodeng.2017.07.016
- Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Drying Technology, 36(11), 1292–1303. https://doi.org/10.1080/07373937.2017.1400557
- Shaari, N. A., Sulaiman, R., Rahman, R. A., & Bakar, J. (2018). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of Food Processing and Preservation, 42(2), e13467. https://doi.org/10.1111/jfpp.13467
- Shittu, T. A., & Lawal, M. O. (2007). Factors affecting instant properties of powdered cocoa beverages. Food Chemistry, 100(1), 91–98. https://doi.org/10.1016/j.foodchem.2005.09.013
- Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., Wang, J., & Xiao, H. W. (2020). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology, 38(9), 1151–1164. https://doi.org/10.1080/07373937.2019.1616752
- Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2012). Effects of foaming agents and foam density on drying characteristics and textural property of banana foams. LWT—Food Science and Technology, 47(2), 348–357. https://doi.org/10.1016/j.lwt.2012.01.030
- Tulek, Y. (2011). Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science and Technology, 13(5), 655–664.
- Vasco, C., Avila, J., Ruales, J., Svanberg, U., & Kamal-Eldin, A. (2009). Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). International Journal of Food Sciences and Nutrition, 60 Suppl 7, 278–288. https://doi.org/10.1080/09637480903099618
- Vernon-Carter, E. J., Espinosa-Paredes, G., Beristain, C. I., & Romero-Tehuitzil, H. (2001). Effect of foaming agents on the stability, rheological properties, drying kinetics and flavour retention of tamarind foam-mats. Food Research International, 34(7), 587–598. https://doi.org/10.1016/S0963-9969(01)00076-X
- Völp, A. R., Seitz, J., & Willenbacher, N. (2021). Structure and rheology of foams stabilized by lupin protein isolate of Lupinus. angustifolius. Food Hydrocolloids, 120, 106919. https://doi.org/10.1016/j.foodhyd.2021.106919
- Wang, S., & Zhu, F. (2020). Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends in Food Science & Technology, 95, 45–58. https://doi.org/10.1016/j.tifs.2019.11.004
- Zheng, X. Z., Liu, C. H., & Zhou, H. (2011). Optimization of parameters for microwave-assisted foam mat drying of blackcurrant pulp. Drying Technology, 29(2), 230–238. https://doi.org/10.1080/07373937.2010.484112