Influence of processing techniques on the protein quality of major and minor millet crops: A review
Corresponding Author
Sneh Punia Bangar
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
Correspondence
Sneh Punia Bangar, Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA.
Email: [email protected]
Search for more papers by this authorShweta Suri
Amity Institute of Food Technology (AIFT), Amity University Uttar Pradesh, Noida, India
Search for more papers by this authorSantanu Malakar
Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
Search for more papers by this authorNitya Sharma
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorWilliam Scott Whiteside
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorCorresponding Author
Sneh Punia Bangar
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
Correspondence
Sneh Punia Bangar, Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA.
Email: [email protected]
Search for more papers by this authorShweta Suri
Amity Institute of Food Technology (AIFT), Amity University Uttar Pradesh, Noida, India
Search for more papers by this authorSantanu Malakar
Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
Search for more papers by this authorNitya Sharma
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorWilliam Scott Whiteside
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
Search for more papers by this authorAbstract
Millets have a distinctive protein composition comprising of high concentrations of essential amino acids with numerous health-promoting characteristics. Through various in vitro and animal research studies, a variety of millet-based bioactive peptides isolated from millets have given significant evidence of their health-improving properties. However, the processing technique significantly impacts the biological activity of these millet peptides. The amount, structure, and function of major and minor millet proteins are influenced by different processing techniques. Studies have demonstrated that germination and fermentation increase bioavailability, in vitro protein digestibility, and protein efficiency. Moreover, the innovative processing techniques viz: microwave, ultrasound, and high-pressure processing had a significant impact on structural and quality attributes of the millet proteins and their fractionation. The non-thermal processing ensured the modification of structure and stability with the enhancement of functionality of the millet protein. The present review has been designed to summarize the major health benefits of millet proteins and the effect of various processing methods on their quality attributes. The information provided in the review would play an important role in further research and development activities at the commercial scale governing the improvement in millet protein efficiency, modification, bioavailability, and in vitro protein digestibility by different processing techniques.
Novelty impact statement
This review summarized the recent research on the major health benefits of millet proteins and the influence of different processing methods on bioactive peptides from major and minor millets.
CONFLICT OF INTEREST
The authors have declared no conflict of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- Adebiyi, J. A., Obadina, A. O., Mulaba-Bafubiandi, A. F., Adebo, O. A., & Kayitesi, E. (2016). Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. Journal of Cereal Science, 70, 132–139. https://doi.org/10.1016/J.JCS.2016.05.026
- Agrawal, H., Joshi, R., & Gupta, M. (2016). Isolation, purification and characterization of anti-oxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chemistry, 204, 365–372.
- Agrawal, H., Joshi, R., & Gupta, M. (2017). Isolation and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum. Lwt, 84, 608–616.
- Agrawal, H., Joshi, R., & Gupta, M. (2019). Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Research International, 120, 697–707.
- Akinola, S. A., Badejo, A. A., Osundahunsi, O. F., & Edema, M. O. (2017). Effect of preprocessing techniques on pearl millet flour and changes in technological properties. International Journal of Food Science & Technology, 52(4), 992–999. https://doi.org/10.1111/IJFS.13363
- Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science, 68(4), 1254–1258.
- Amadou, I., Gounga, M. E., Shi, Y. H., & Le, G. W. (2014). Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food and Bioproducts Processing, 92(1), 38–45. https://doi.org/10.1016/J.FBP.2013.07.009
- Amadou, I., Le, G. W., Amza, T., Sun, J., & Shi, Y. H. (2013). Purification and characterization of foxtail millet-derived peptides with antioxidant and anti-microbial activities. Food Research International, 51(1), 422–428.
- Annor, G. A., Tyl, C., Marcone, M., Ragaee, S., & Marti, A. (2017). Why do millets have slower starch and protein digestibility than other cereals? Trends in Food Science & Technology, 66, 73–83.
- Babiker, E., Abdelseed, B., Hassan, H., & Adiamo, O. (2018). Effect of decortication methods on the chemical composition, anti-nutrients, ca, P and Fe contents of two pearl millet cultivars during storage. World Journal of Science, Technology and Sustainable Development, 15(3), 278–286. https://doi.org/10.1108/wjstsd-01-2018-0005
- Bagdi, A., Balázs, G., Schmidt, J., Szatmári, M., Schoenlechner, R., Berghofer, E., & Tömösközia, S. (2011). Protein characterization and nutrient composition of Hungarian proso millet varieties and the effect of decortication. Acta Alimentaria, 40, 128–141.
- Bandyopadhyay, T., Muthamilarasan, M., & Prasad, M. (2017). Millets for next generation climate-smart agriculture. Frontiers in Plant Science, 8, 1266.
- Bisht, A., Thapliyal, M., & Singh, A. (2016). Screening and isolation of antibacterial proteins/peptides from seeds of millets. International Journal of Current Pharmaceutical Research, 8(3), 96–99.
- Budhwar, S., Sethi, K., & Chakraborty, M. (2020). Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains. Food Production, Processing and Nutrition, 2, 1–17.
10.1186/s43014-020-00026-w Google Scholar
- Camargo Filho, I., Cortez, D. A. G., Ueda-Nakamura, T., Nakamura, C. V., & Dias Filho, B. P. (2008). Antiviral activity and mode of action of a peptide isolated from sorghum bicolor. Phytomedicine, 15(3), 202–208.
- Chandrasekara, A., & Shahidi, F. (2011). Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59(17), 9563–9571.
- Chen, J., Duan, W., Ren, X., Wang, C., Pan, Z., Diao, X., & Shen, Q. (2017). Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats. European Journal of Nutrition, 56(6), 2129–2138.
- Devi, P. B., & Rajendran, S. (2021). Impact of starter culture on nutraceutical and functional properties of underutilized millet-legume co-fermented Indian traditional product. LWT- Food Science and Technology, 149, 111818.
- Devi, P. S., Kumar, M. S., & Das, S. M. (2012). DNA damage protecting activity and free radical scavenging activity of anthocyanins from red sorghum (Sorghum bicolor) bran. Biotechnology Research International, 2012.
10.1155/2012/258787 Google Scholar
- Devisetti, R., Yadahally, S. N., & Bhattacharya, S. (2014). Nutrients and anti-nutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT - Food Science and Technology, 59(2P1), 889–895. https://doi.org/10.1016/J.LWT.2014.07.003
- Dharmaraj, U., & Malleshi, N. G. (2011). Changes in carbohydrates, proteins and lipids of finger millet after hydrothermal processing. LWT - Food Science and Technology, 44(7), 1636–1642. https://doi.org/10.1016/j.lwt.2010.08.014
- Dias-Martins, A. M., Pessanha, K. L. F., Pacheco, S., Rodrigues, J. A. S., & Carvalho, C. W. P. (2018). Potential use of pearl millet (Pennisetum glaucum [L.] R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Research International, 109, 175–186.
- Elizabeth Chinenye, O., Abimbola Ayodeji, O., & Joseph Baba, A. (2017). Effect of fermentation (natural and starter) on the physicochemical, anti-nutritional and proximate composition of pearl millet used for flour production. Http://Www.Sciencepublishinggroup.Com, 5(1), 12. https://doi.org/10.11648/J.BIO.20170501.13
10.11648/J.BIO.20170501.13 Google Scholar
- Fu, Y., Yin, R., Liu, Z., Niu, Y., Guo, E., Cheng, R., Diao, X., Xue, Y., & Shen, Q. (2020). Hypoglycemic effect of prolamin from cooked foxtail millet (Setaria italic) on streptozotocin-induced diabetic mice. Nutrients, 12, 3452.
- Gong, X., An, Q., Le, L., Geng, F., Jiang, L., Yan, J., Xiang, D., Peng, L., Zou, L., Zhao, G., & Wan, Y. (2022). Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Critical Reviews in Food Science and Nutrition, 62(11), 2855–2871.
- Gowthamraj, G., Raasmika, M., & Narayanasamy, S. (2020). Efficacy of fermentation parameters on protein quality and microstructural properties of processed finger millet flour. Journal of Food Science and Technology, 58(8), 3223–3234. https://doi.org/10.1007/S13197-020-04826-3
- Gulati, P., Sabillón, L., & Rose, D. J. (2018). Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour. Food Research International, 109(January), 583–588. https://doi.org/10.1016/j.foodres.2018.05.005
- Guo, X., Sha, X., Rahman, E., Wang, Y., Ji, B., Wu, W., & Zhou, F. (2018). Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols. Journal of Food Science and Technology, 55(3), 1010–1020.
- Hama, F., Icard-Vernière, C., Guyot, J. P., Picq, C., Diawara, B., & Mouquet-Rivier, C. (2011). Changes in micro- and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science, 54, 425–433.
- Hassan, A. B., Mohamed Ahmed, I. A., Osman, N. M., Eltayeb, M. M., Osman, G. A., & Babiker, E. E. (2006). Effect of processing treatments followed by fermentation on protein content and digestibility of pearl millet (Pennisetum typhoideum) cultivars. Pakistan Journal of Nutrition, 5(1), 86–89. https://doi.org/10.3923/PJN.2006.86.89
10.3923/PJN.2006.86.89 Google Scholar
- Hassan, Z. M., Sebola, N. A., & Mabelebele, M. (2021). The nutritional use of millet grain for food and feed: A review. Agriculture & Food Security, 10(1), 1–14.
10.1186/s40066-020-00282-6 Google Scholar
- He, R., Liu, M., Zou, Z., Wang, M., Wang, Z., Ju, X., & Hao, G. (2022). Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo. Food & Function, 13(4), 1881–1889.
- Hegde, P. S., Rajasekaran, N. S., & Chandra, T. S. (2005). Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutrition Research, 25(12), 1109–1120.
- Hejazi, S. N., & Orsat, V. (2016). Malting process optimization for protein digestibility enhancement in finger millet grain. Journal of Food Science and Technology, 53(4), 1929–1938.
- Ibrahim, M. M. (2006). RAS inhibition in hypertension. Journal of Human Hypertension, 20(2), 101–108.
- Iyabo, O. O., Ibiyinka, O., & Deola, O. A. (2018). Comparative study of nutritional, functional and anti-nutritional properties of white sorghum bicolor (sorghum) and pennisetum glaucum (pearl millet). International Journal of Engineering Technologies and Management Research, 5(3), 151–158. https://doi.org/10.29121/IJETMR.V5.I3.2018.187
10.29121/ijetmr.v5.i3.2018.187 Google Scholar
- Jakubczyk, A., Szymanowska, U., Karaś, M., Złotek, U., & Kowalczyk, D. (2019). Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains. CyTA-Journal of Food, 17(1), 324–333.
- Jalgaonkar, K., Jha, S. K., & Sharma, D. K. (2016). Effect of thermal treatments on the storage life of pearl millet (Pennisetum glaucum) flour. Indian Journal of Agricultural Sciences, 86(6), 762–767.
- Jha, A., Tripathi, A. D., Alam, T., & Yadav, R. (2013). Process optimization for manufacture of pearl millet-based dairy dessert by using response surface methodology (RSM). Journal of Food Science and Technology, 50(2), 367–373.
- Ji, Z., Feng, R., & Mao, J. (2019). Separation and identification of antioxidant peptides from foxtail millet (Setaria italica) prolamins enzymatic hydrolysate. Cereal Chemistry, 96, 981–993.
- Jideani, I. A. (2012). Digitaria exilis (acha/fonio), Digitaria iburua (iburu/fonio) and Eluesine coracana (Tamba/finger millet) non-conventional cereal grains with potentials. Scientific Research and Essays, 7(45), 3834–3843.
- Kalinova, J., & Moudry, J. (2006). Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods for Human Nutrition, 61(1), 43–47.
- Kamara, M. T., Ming, Z. H., & Kexue, Z. (2009). Extraction, characterization and nutritional properties of two varieties of defatted foxtail millet flour (Setaria italica L.) grown in China. Asian Journal of Biochemistry, 4(3), 88–98.
- Karaś, M., Jakubczyk, A., Szymanowska, U., Jęderka, K., Lewicki, S., & Złotek, U. (2019). Different temperature treatments of millet grains affect the biological activity of protein hydrolyzates and peptide fractions. Nutrients, 11(3), 550.
- Khare, P., Maurya, R., Bhatia, R., Mangal, P., Singh, J., Podili, K., Bishnoi, M., & Kondepudi, K. K. (2020). Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food & Function, 11, 9833–9847.
- Kim, J. S., Hyun, T. K., & Kim, M. J. (2011). The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chemistry, 124(4), 1647–1651.
- Kumar, S. R., Sadiq, M. B., & Anal, A. K. (2020). Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT, 128(September 2019), 109465. https://doi.org/10.1016/j.lwt.2020.109465
- Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K., & Vadivel, V. (2012). Total phenolic content, antioxidant and anti-diabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Science and Technology, 45(2), 269–276.
- Kushwaha, A., Singh, A., Sirohi, R., & Tarafdar, A. (2019). Effect of hydrothermal treatment and milling parameters on milling and nutritional qualities of finger millet (Eleusine coracana ). Journal of Agricultural Engineering, 55(4), 1–6.
- Li, R., Dai, L., Peng, H., Jiang, P., Liu, N., Zhang, D., Wang, C., Li, Z., & Dongjie Zhang, C. (2021). Effects of microwave treatment on sorghum grains: Effects on the physicochemical properties and in vitro digestibility of starch. Journal of Food Process Engineering, 44, e13804. https://doi.org/10.1111/jfpe.13804
- Li, W., Gao, J., Saleh, A. S. M., Tian, X., Wang, P., Jiang, H., & Zhang, G. (2018). The modifications in physicochemical and functional properties of Proso millet starch after ultra-high pressure (UHP) process. Starch - Stärke, 70(5–6), 1700235. https://doi.org/10.1002/STAR.201700235
- Lohani, U. C., & Muthukumarappan, K. (2021). Study of continuous flow ultrasonication to improve total phenolic content and antioxidant activity in sorghum flour and its comparison with batch ultrasonication. Ultrasonics Sonochemistry, 71, 105402. https://doi.org/10.1016/J.ULTSONCH.2020.105402
- Lohani, U. C., Pandey, J. P., & Shahi, N. C. (2012). Effect of degree of polishing on milling characteristics and proximate compositions of barnyard millet (Echinochloa frumentacea). Food and Bioprocess Technology, 5, 1113–1119.
- Majid, A., & Priyadarshini CG, P. (2020). Millet derived bioactive peptides: A review on their functional properties and health benefits. Critical Reviews in Food Science and Nutrition, 60(19), 3342–3351.
- Mensah, E. E., Asamoah, Y. D., Yunus, S., Issah, N., & Kofi, E. (2022). A comparative study of the effect of microwave and conventional heating methods on proximate composition of spiced millet porridge. International Journal of Food Science and Nutrition, 7, 56–61.
- Mitharwal, S., Kumar, S., & Chauhan, K. (2021). Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. Food Bioscience, 44, 101382.
- Mohamed, T. K., Issoufou, A., & Zhou, H. (2012). Antioxidant activity of fractionated foxtail millet protein hydrolysate. International Food Research Journal, 19(1), 5–14.
- Mohamed, T. K., Zhu, K., Issoufou, A., Fatmata, T., & Zhou, H. (2009). Functionality, in vitro digestibility and physicochemical properties of two varieties of defatted foxtail millet protein concentrates. International Journal of Molecular Sciences, 10(12), 5224–5238.
- Morah, F. N. I., & Etukudo, U. P. (2017). Effect of sprouting on nutritional value of Panicium miliaceum (proso millet). Edorium Journal of Nutrition and Dietetics, 4(May), 1–4. https://doi.org/10.5348/N09-2017-4-SR-1
10.5348/N09?2017?4?SR?1 Google Scholar
- Mustač, N. Č., Voučko, B., Novotni, D., Drakula, S., Gudelj, A., Dujmić, F., & Ćurić, D. (2019). Optimization of high intensity ultrasound treatment of Proso millet bran to improve physical and nutritional quality. Food Technology and Biotechnology, 57(2), 183–190. https://doi.org/10.17113/ftb.57.02.19.6100
- Nanje Gowda, N. A., Siliveru, K., Vara Prasad, P. V., Bhatt, Y., Netravati, B. P., & Gurikar, C. (2022). Modern processing of Indian millets: A perspective on changes in nutritional properties. Food, 11(4), 1–18. https://doi.org/10.3390/foods11040499
- Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41(August 2017), 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002
- Nishizawa, N., Togawa, T., Park, K. O., Sato, D., Miyakoshi, Y., Inagaki, K., Ohmori, N., Ito, Y., & Nagasawa, T. (2009). Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice. Bioscience, Biotechnology, and Biochemistry, 73, 351–360.
- Ofosu, F. K., Elahi, F., Daliri, E. B. M., Chelliah, R., Ham, H. J., Kim, J. H., Han, S. I., Hur, J. H., & Oh, D. H. (2020). Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants, 9, 254.
- Onyango, C., Luvitaa, S. K., Unbehend, G., & Haase, N. (2020). Physico-chemical properties of flour, dough and bread from wheat and hydrothermally-treated finger millet. Journal of Cereal Science, 93, 102954.
- Orona-Tamayo, D., Valverde, M. E., & Paredes-López, O. (2019). Bioactive peptides from selected latin american food crops–A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition, 59(12), 1949–1975.
- Owheruo, J. O., Ifesan, B. O. T., & Kolawole, A. O. (2019). Physicochemical properties of malted finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Science & Nutrition, 7(2), 476–482. https://doi.org/10.1002/FSN3.816
- Pampangouda, P., Munishamanna, K. B., & Gurumurthy, H. (2015). Effect of saccharomyces boulardii and lactobacillus acidophilus fermentation on little millet (Panicum sumatrense). Journal of Applied and Natural Science, 7(1), 260–264. https://doi.org/10.31018/jans.v7i1.599
- Pradeep, P. M., & Sreerama, Y. N. (2015). Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chemistry, 169, 455–463. https://doi.org/10.1016/J.FOODCHEM.2014.08.010
- Pushparaj, F. S., & Urooj, A. (2011). Influence of processing on dietary fiber, tannin and in vitro protein digestibility of pearl millet. Food and Nutrition Sciences, 2(8), 895–904.
- Rani, M., Amane, D., & Ananthanarayan, L. (2019). Impact of partial replacement of rice with other selected cereals on idli batter fermentation and idli characteristics. Journal of Food Science and Technology, 56(3), 1192–1201. https://doi.org/10.1007/S13197-019-03582-3
- Rathore, T., Singh, R., Kamble, D. B., Upadhyay, A., & Thangalakshmi, S. (2019). Review on finger millet: Processing and value addition. The Pharma Innovation Journal, 8(4), 283–291.
- Sachdev, N., Goomer, S., & Singh, L. R. (2021). Foxtail millet: A potential crop to meet future demand scenario for alternative sustainable protein. Journal of the Science of Food and Agriculture, 101, 831–842.
- Saleh, A. S. M., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: Nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281–295. https://doi.org/10.1111/1541-4337.12012
- Santhi Sirisha, K., Author, C., Hymavathi, T., Suchiritha Devi, S., & Neela Rani, R. (2022). Nutritional properties of browntop millet (Brachiaria ramosa). The Pharma Innovation Journal, 11(1), 729–733.
- Segura Campos, M. R., Peralta González, F., Chel Guerrero, L., & Betancur Ancona, D. (2013). Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International Journal of Food Science.
- Seo, K.-H., Ra, J.-E., Lee, S.-J., Lee, J. H., Kim, S. R., Lee, J. H., & Seo, W. D. (2015). Anti-hyperglycemic activity of polyphenols isolated from barnyard millet (Echinochloa utilis L.) and their role inhibiting α-glucosidase. Journal of the Korean Society for Applied Biological Chemistry 2015, 58(4), 571–579.
- Shan, S., Li, Z., Newton, I. P., Zhao, C., Li, Z., & Guo, M. (2014). A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicology Letters, 227(2), 129–138.
- Sharma, B., & Gujral, H. S. (2019). Influence of nutritional and anti-nutritional components on dough rheology and in vitro protein & starch digestibility of minor millets. Food Chemistry, 299, 125115.
- Sharma, S., Saxena, D. C., & Riar, C. S. (2015). Antioxidant activity, total phenolics, flavonoids and anti-nutritional characteristics of germinated foxtail millet (Setaria italica). Cogent Food & Agriculture, 1(1), 1081728. https://doi.org/10.1080/23311932.2015.1081728
10.1080/23311932.2015.1081728 Google Scholar
- Sharma, S., Saxena, D. C., & Riar, C. S. (2017). Using combined optimization, GC–MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and GABA contents of Kodo millet (Paspalum scrobiculatum). Food Chemistry, 233, 20–28. https://doi.org/10.1016/J.FOODCHEM.2017.04.099
- Sharma, S., Saxena, D. C., & Riar, C. S. (2018). Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry, 245, 863–870.
- Shobana Devi, R. N. P. (2016). Effect of processing on the characteristics changes in barnyard and foxtail millet. Journal of Food Processing & Technology, 7(3), 1–9. https://doi.org/10.4172/2157-7110.1000566
10.4172/2157-7110.1000566 Google Scholar
- Srigiripura, C. V., Kotebagilu, N. P., & Urooj, A. (2019). In vitro starch and protein digestibility of disease specific nutrition formulations. Current Research in Nutrition and Food Science Journal, 7(1), 66–74.
- Sruthi, N. U., & Rao, P. S. (2021). Effect of processing on storage stability of millet flour: A review. Trends in Food Science and Technology, 112(March), 58–74. https://doi.org/10.1016/j.tifs.2021.03.043
- Sruthi, N. U., Rao, P. S., & Rao, B. D. (2021). Decortication induced changes in the physico-chemical, anti-nutrient, and functional properties of sorghum. Journal of Food Composition and Analysis, 102(May), 104031. https://doi.org/10.1016/j.jfca.2021.104031
- Sullivan, A. C., Pangloli, P., & Dia, V. P. (2018). Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chemistry, 240, 1121–1130. https://doi.org/10.1016/J.FOODCHEM.2017.08.046
- Syeunda, C. O., Anyango, J. O., Faraj, A. K., & Kimurto, P. K. (2021). In vitro protein digestibility of finger millet complementary porridge as affected by compositing precooked cowpea with improved malted finger millet. Journal of Food Science and Technology, 58(2), 571–580.
- Tarhini, M., Greige-Gerges, H., & Elaissari, A. (2017). Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 522(1–2), 172–197.
- Tiwari, A., Jha, S. K., Pal, R. K., Sethi, S., & Krishan, L. (2014). Effect of pre-milling treatments on storage stability of pearl millet flour. Journal of Food Processing and Preservation, 38, 1215–1223.
- Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/J.TRAC.2015.04.013
- Tu, M., Cheng, S., Lu, W., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105, 7–17.
- Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403–411.
- Wang, H., Fu, Y., Zhao, Q., Hou, D., Yang, X., Bai, S., Diao, X., Xue, Y., & Shen, Q. (2022). Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Frontiers in Nutrition, 9, 1–8.
- Wiedemair, V., Scholl-Bürgi, S., Karall, D., & Huck, C. W. (2020). Amino acid profiles and compositions of different cultivars of Panicum miliaceum L. Chromatographia, 83(7), 829–837.
- Xu, W., Wei, L., Qu, W., Liang, Z., Wang, J., Peng, X., Zhang, Y., & Huang, K. (2011). A novel anti-fungal peptide from foxtail millet seeds. Journal of the Science of Food and Agriculture, 91(9), 1630–1637.
- Yadav, D. N., Anand, T., & Singh, A. K. (2014). Co-extrusion of pearl millet-whey protein concentrate for expanded snacks. International Journal of Food Science & Technology, 49, 840–846.
- Zacharia, R. K., Aneena, E. R., Panjikkaran, S. T., Sharon, C. L., & Lakshmi, P. S. (2020). Standardisation and quality evaluation of finger millet based nutri flakes journal of applied life sciences. International, 23, 36–42. https://doi.org/10.9734/jalsi/2020/v23i1030191
10.9734/jalsi/2020/v23i1030191 Google Scholar
- Zhang, F., & Shen, Q. (2021). The impact of endogenous proteins on hydration, pasting, thermal and rheology attributes of foxtail millet. Journal of Cereal Science, 100(June), 103255. https://doi.org/10.1016/j.jcs.2021.103255
- Zhang, Y., Jing, X., Chen, Z., & Wang, X. (2022). Purification and identification of antioxidant peptides from millet gliadin treated with high hydrostatic pressure. LWT, 164, 113654.
- Zhang, Y., Zhang, X., Zhang, Z., Chen, Z., Jing, X., & Wang, X. (2022). Effect of high hydrostatic pressure treatment on the structure and physicochemical properties of millet gliadin. LWT, 154, 112755. https://doi.org/10.1016/J.LWT.2021.112755