Influence of egg albumin and whey protein in the co-encapsulation of betalains and phenolic compounds from Bougainvillea glabra bracts in Ca(II)-alginate beads
Fernanda Kuhn
Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft
Search for more papers by this authorPatricio R. Santagapita
Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, & CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Buenos Aires, Argentina
Contribution: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Caciano Pelayo Zapata Noreña
Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Caciano Pelayo Zapata Noreña, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorFernanda Kuhn
Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Contribution: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft
Search for more papers by this authorPatricio R. Santagapita
Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, & CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Buenos Aires, Argentina
Contribution: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Caciano Pelayo Zapata Noreña
Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Caciano Pelayo Zapata Noreña, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAbstract
Bougainvillea glabra bracts aqueous extract was co-encapsulated in Ca(II)-alginate beads, with the inclusion of egg albumin and whey protein isolate. Rheological measurements of the dispersions prepared in advance to beads formation showed a viscosity reduction by WPI, however, albumin increased the viscosity due to higher intermolecular association with alginate, as confirmed by FT-IR. The beads supplemented with proteins showed higher encapsulation efficiencies, with values higher than 70% for phenolic compounds and 50% for betalains. Rupture strength varied from 31.1 to 38.9 N for beads containing whey protein and albumin, respectively, indicating that the inclusion of these proteins resulted in beads with different mechanical properties and applications. Thermogravimetric analysis and FT-IR indicated molecular interactions between B. glabra compounds, sodium alginate, and proteins. The beads structural characterization determined by Small Angle X-ray Scattering demonstrated that Ca(II)-alginate microstructure was highly affected by proteins, especially albumin, revealing strong interactions between these biopolymers.
Novelty impact statement
This study employs a novel matrix to encapsulate phenolic compounds and betalains from B. glabra bracts in Ca(II)-alginate beads using egg albumin and whey protein isolate to reinforce the structure of the beads and improve their chemical stability. Small Angle X-ray Scattering (SAXS) technique showed that proteins affected the beads microstructure, revealing strong interaction with Ca(II)-alginate. The inclusion of egg albumin and whey protein resulted in beads with different mechanical properties allowing their application in several food products.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Supporting Information
Filename | Description |
---|---|
jfpp15918-sup-0001-Supinfo.docxWord document, 97.9 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aguirre Calvo, T. R., Busch, V. M., & Santagapita, P. R. (2017). Stability and release of an encapsulated solvent-free lycopene extract in alginate-based beads. LWT- Food Science and Technology, 77, 406–412. https://doi.org/10.1016/j.lwt.2016.11.074
- Aguirre Calvo, T. R. A., Perullini, M., & Santagapita, P. R. (2018). Encapsulation of betacyanins and polyphenols extracted from leaves and stems of beetroot in Ca (II)-alginate beads: A structural study. Journal of Food Engineering, 235, 32–40. https://doi.org/10.1016/j.jfoodeng.2018.04.015
- Aguirre Calvo, T. R. A., Santagapita, P. R., & Perullini, M. (2019). Functional and structural effects of hydrocolloids on Ca(II)-alginate beads containing bioactive compounds extracted from beetroot. LWT - Food Science and Technology, 111, 520–526. https://doi.org/10.1016/j.lwt.2019.05.047
- Aguirre-Calvo, T. R., Molino, S., Perullini, M., Rufián-Henares, J. Á., & Santagapita, P. R. (2020). Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(II)–alginate beads. Food & Function, 11, 10645–10654. https://doi.org/10.1039/D0FO02347G
- Arriola, N. D. A., de Medeiros, P. M., Prudencio, E. S., Müller, C. M. O., & Amboni, R. D. M. C. (2016). Encapsulation of aqueous leaf extract of Stevia rebaudiana Bertoni with sodium alginate and its impact on phenolic content. Food Bioscience, 13, 32–40. https://doi.org/10.1016/j.fbio.2015.12.001
- Azevedo, V. M., Silva, E. K., Pereira, C. F. G., da Costa, J. M. G., & Borges, S. V. (2015). Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids, 43, 252–258. https://doi.org/10.1016/j.foodhyd.2014.05.027
- Aztatzi-Rugerio, L., Granados-Balbuena, S. Y., Zainos-Cuapio, Y., Ocaranza-Sánchez, E., & Rojas-López, M. (2019). Analysis of the degradation of betanin obtained from beetroot using Fourier transform infrared spectroscopy. Journal of Food Science and Technology, 56, 3677–3686. https://doi.org/10.1007/s13197-019-03826-2
- Balanč, B., Kalusević, A., Drvenica, I., Coelho, M. T., Djordjević, V., Alves, V. D., Sousa, I., Moldao-Martins, M., Rakić, V., Nedović, V., & Bugarsi, B. (2016). Calcium-alginate-inulin micro beads as carriers for aqueous carqueja extract. Journal of Food Science, 81(1), 65–75. https://doi.org/10.1111/1750-3841.13167
- Baneshi, M., Dadfarnia, S., Shabani, A. M. H., Sabbagh, S. K., Haghgoo, S., & Bardania, H. (2019). A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. International Journal of Pharmaceutics, 564, 145–152. https://doi.org/10.1016/j.ijpharm.2019.04.025
- Belalia, F., & Djelali, N. (2014). Rheological properties of sodium alginate solutions. Revue Roumaine De Chimie, 59(2), 135–145.
- Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., Vojvodić, A., Mršić, G., & Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139–152. https://doi.org/10.1016/j.foodhyd.2016.01.020
- Belščak-Cvitanović, A., Đorđević, V., Karlović, S., Pavlović, V., Komes, D., Ježek, D., Bugarski, B., & Nedović, V. (2015). Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocolloids, 51, 361–374. https://doi.org/10.1016/j.foodhyd.2015.05.039
- Bengoechea, C., López-Castejón, M. L., Márquez, S., Salinas, V., Puppo, C., & Guerrero, A. (2019). Gelation properties of calcium-inulin gels. Food Hydrocolloids, 97, 105239. https://doi.org/10.1016/j.foodhyd.2019.105239
- Blandino, A., Macías, M., & Cantero, D. (1999). Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. Journal of Bioscience and Bioengineering, 88(6), 686–689. https://doi.org/10.1016/S1389-1723(00)87103-0
- Bohin, M. C., Vincken, J. P., Van Der Hijden, H. T., & Gruppen, H. (2012). Efficacy of food proteins as carriers for flavonoids. Journal of Agricultural and Food Chemistry, 60(16), 4136–4143. https://doi.org/10.1021/jf205292r
- Bourbon, A. I., Cerqueira, M. A., & Vicente, A. A. (2016). Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, 180, 110–119. https://doi.org/10.1016/j.jfoodeng.2016.02.016
- Buitimea-Cantúa, N. E., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2018). Phenolic - protein interactions: Effects on food properties and health benefits. Journal of Medicinal Food, 21(2), 188–198. https://doi.org/10.1089/jmf.2017.0057
- Bušić, A., Belščak-Cvitanović, A., Cebin, A. V., Karlović, S., Kovač, V., Špoljarić, I., Mršić, G., & Komes, D. (2018). Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Research International, 111, 244–255. https://doi.org/10.1016/j.foodres.2018.05.034
- Cakıroglu, K., Dervisoglu, M., & Gul, O. (2020). Development and characterization of black mulberry (Morus nigra) pekmez (molasses) composite films based on alginate and pectin. Journal of Texture Studies, 51(5), 800–809. https://doi.org/10.1111/jtxs.12528
- Chang, K., Liu, J., Jiang, W., Zhang, R., Zhang, T., & Liu, B. (2020). Ferulic acid-ovalbumin protein nanoparticles: Structure and foaming behavior. Food Research International, 136, 109311. https://doi.org/10.1016/j.foodres.2020.109311
- Chen, K., & Zhang, H. (2019). Alginate/pectin aerogel microspheres for controlled release of pro anthocyanidins. International Journal of Biological Macromolecules, 136, 936–943. https://doi.org/10.1016/j.ijbiomac.2019.06.138
- Croft, K. D., Yamashita, Y., O'Donoghue, H., Shirasaya, D., Ward, N. C., & Ashida, A. (2018). Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease. Fitoterapia, 126, 22–28. https://doi.org/10.1016/j.fitote.2017.12.002
- de Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., & Sato, H. H. (2017). Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure, 14, 17–29. https://doi.org/10.1016/j.foostr.2017.05.004
- de Moura, S. C. S. R., Berling, C. L., Germerc, S. P. M., Alvimd, I. D., & Hubinger, M. D. (2018). Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chemistry, 241, 317–327. https://doi.org/10.1016/j.foodchem.2017.08.095
- Delpino-Rius, A., Eras, J., Vilaró, F., Cubero, M. A., Balcells, M., & Canela-Garayoa, R. (2015). Characterisation of phenolic compounds in processed fibers from the juice industry. Food Chemistry, 172, 575–584. https://doi.org/10.1016/j.foodchem.2014.09.071
- Dickinson, E. (1998). Stability and rheological implications of electrostatic milk protein- polysaccharide interactions. Trends in Food Science & Technology, 9, 347–354. https://doi.org/10.1016/S0924-2244(98)00057-0
- Esfanjani, F. A., & Jafari, S. M. (2016). Biopolymer nano-particles and natural nanocarriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532–543. https://doi.org/10.1016/j.colsurfb.2016.06.053
- Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129, 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093
- Guha, S., Majumder, K., & Mine, Y. (2019). Egg proteins. Reference module in food science. Encyclopedia of Food Chemistry, 2019, 74–84. https://doi.org/10.1016/B978-0-08-100596-5.21603-X
10.1016/B978-0-08-100596-5.21603-X Google Scholar
- Herbach, K. M., Stintzing, F. C., & Carle, R. (2006). Betalain stability and degradation-structural and chromatic aspects. Journal of Food Science, 71(4), 41–50. https://doi.org/10.1111/j.1750-3841.2006.00022.x
- Horincar, G., Aprodu, I., Barbu, V., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2019). Interactions of flavonoids from yellow onion skins with whey proteins: Mechanisms of binding and microencapsulation with different combinations of polymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 215, 158–167. https://doi.org/10.1016/j.saa.2019.02.100
- Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
- Kaklamani, G., Cheneler, D., Grover, L. M., Adams, M. J., & Bowen, J. (2014). Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials, 36, 135–142. https://doi.org/10.1016/j.jmbbm.2014.04.013
- Khan, M. I., Sri Harsha, P. S. C., Giridhar, P., & Ravishankar, G. A. (2012). Pigment identification, nutritional composition, bioactivity, and in vitro cancer cell cytotoxicity of Rivina humilis L. berries, potential source of betalains. LWT – Food Science and Technology, 47, 315–323. https://doi.org/10.1016/j.lwt.2012.01.025
- Kugler, F., Stintzing, F. C., & Carle, R. (2004). Identification of betalains from petioles of differently colored Swiss Chard (Beta vulgaris L. ssp. cicla [L.] Alef. Cv. Bright Lights) by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 52(10), 2975–2981. https://doi.org/10.1021/jf035491w
- Kuhn, F., de Azevedo, E., Frazzon, J., & Noreña, C. P. Z. (2021). Evaluation of green extraction methods on bioactive compounds and antioxidant capacity from Bougainvillea glabra bracts. Sustainable Chemistry and Pharmacy, 19, 100362. https://doi.org/10.1016/j.scp.2020.100362
- Kurozawa, L. E., & Hubinger, M. D. (2017). Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 15, 50–55. https://doi.org/10.1016/j.cofs.2017.06.004
- Lavelli, P. S. C., & Harsha, S. (2019). Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Research International, 119, 822–828. https://doi.org/10.1016/j.foodres.2018.10.065
- Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
- Lesjak, M., Beara, I., Simin, N., Pintać, D., Majkić, T., Bekvalac, K., Orčić, D., & Mimica-Dukić, N. (2018). Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods, 40, 68–75. https://doi.org/10.1016/j.jff.2017.10.047
- Liu, Y., Cai, Y., Ying, D., Fu, Y., Xiong, Y., & Le, X. (2018). Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. International Journal of Biological Macromolecules, 116, 893–900. https://doi.org/10.1016/j.ijbiomac.2018.05.089
- Manev, Z., Denev, P., Zsivanovits, G., & Ludneva, D. (2013). Structural mechanical and gelling properties of alginate beads. Bulgarian Journal of Agricultural Science, 19(4), 770–774.
- Maran, P. J., Priya, B., & Nivetha, V. C. (2015). Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea glabra flowers. Industrial Crops & Products, 63, 182–189. https://doi.org/10.1016/j.indcrop.2014.09.059
- Martínez, J. H., Velázquez, F., Burrieza, H. P., Martínez, K. D., Paula Domínguez Rubio, A., dos Santos Ferreira, C., del Pilar Buera, M., & Pérez, O. E. (2019). Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity. Food Hydrocolloids, 87, 880–890. https://doi.org/10.1016/j.foodhyd.2018.09.016
- McClements, D. J. (2006). Non-covalent interactions between proteins and polysaccharides. Biotechnology Advances, 24(6), 621–625. https://doi.org/10.1016/j.biotechadv.2006.07.003
- Mohammadi, F., & Moeeni, M. (2015). Analysis of binding interaction of genistein and kaempferol with bovine α-lactalbumin. Journal of Functional Foods, 12, 458–467. https://doi.org/10.1016/j.jff.2014.12.012
- Molina, G. A., Hernández-Martínez, A. R., Cortez-Valadez, M., García-Hernández, F., & Estevez, M. (2014). Effects of Tetraethyl Orthosilicate (TEOS) on the light and temperature stability of a pigment from Beta vulgaris and its potential food industry applications. Molecules, 19(11), 17985–18002. https://doi.org/10.3390/molecules191117985
- Mørch, Y. A., Donati, I., Strand, B. L., & Skjak-Bræk, G. (2006). Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 7(5), 1471-1480. https://doi.org/10.1021/bm060010d
- Neves, I. C. O., Silva, S. H., Oliveira, N. L., Lago, A. M. T., Ng, N., Sultani, A., Campelo, P. H., Veríssimo, L. A. A., de Resende, J. V., & Rogers, M. A. (2020). Effect of carrier oil on α-tocopherol encapsulation in ora-pro-nobis (Pereskia aculeata Miller) mucilage-whey protein isolate microparticles. Food Hydrocolloids, 105, 105716. https://doi.org/10.1016/j.foodhyd.2020.105716
- Orozco-Villafuerte, J., Escobar-Rojas, A., Buendía-González, L., García-Morales, C., Hernandez-Jaimes, C., & Alvarez-Ramirez, J. (2018). Evaluation of the protection and release rate of bougainvillea (Bougainvillea spectabilis) extracts encapsulated in alginate beads. Journal of Dispersion Science and Technology, 40(7), 1065–1074. https://doi.org/10.1080/01932691.2018.1496834
- Otálora, M. C., Barbosa, H. J., Perilla, J. E., Osorio, C., & Nazareno, M. A. (2019). Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Gummy candies. LWT - Food Science and Technology, 103, 222–227. https://doi.org/10.1016/j.lwt.2018.12.074
- Otálora, M. C., Carriazo, J. G., Iturriaga, L., Osorio, C., & Nazareno, M. A. (2016). Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chemistry, 202, 373–382. https://doi.org/10.1016/j.foodchem.2016.01.115
- Pasukamonset, P., Kwon, O., & Adisakwattana, S. (2016). Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocolloids, 61, 772–779. https://doi.org/10.1016/j.foodhyd.2016.06.039
- Patil, J. S., Kamalapur, M. V., Marapur, S. C., & Kadam, D. V. (2010). Ionotropic gelation and polyelectrolyte complexation: The novel technique to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest Journal of Nanomaterials and Biostructures, 5(1), 241–248. https://doi.org/10.1016/j.foodhyd.2016.06.039
- Pongjanyakula, T., & Puttipipatkhachorn, S. (2007). Xanthan–alginate composite gel beads: Molecular interaction and in vitro characterization. International Journal of Pharmaceutics, 331(1), 61–71. https://doi.org/10.1016/j.ijpharm.2006.09.011
- Rahim, S. N. A., Sulaiman, A., Hamzah, F., Hamid, K. H. K., Rodhi, M. N. M., Musa, M., & Edama, N. A. (2013). Enzymes encapsulation within calcium alginate-clay beads: Characterization and application for cassava slurry saccharification. Procedia Engineering, 68, 411–417. https://doi.org/10.1016/j.proeng.2013.12.200
10.1016/j.proeng.2013.12.200 Google Scholar
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Riceevans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Roriz, C. L., Barreira, J. C. M., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2018). Gomphrena globosa L. as a novel source of food-grade betacyanins: Incorporation in ice-cream and comparison with beet-root extracts and commercial betalains. LWT- Food Science and Technology, 92, 101–107. https://doi.org/10.1016/j.lwt.2018.02.009
- Saleem, H., Usman, A., Mahomoodally, M. F., & Ahemad, N. (2021). Bougainvillea glabra (choisy): A comprehensive review on botany, traditional uses, phytochemistry, pharmacology and toxicity. Journal of Ethnopharmacology, 266, 113356. https://doi.org/10.1016/j.jep.2020.113356
- Salehi, B., Vlaisavljevic, S., Adetunji, C. O., Adetunji, J. B., Kregiel, D., Antolak, H., Pawlikowska, E., Uprety, Y., Mileski, K. S., Devkota, H. P., Sharifi-Rad, J., Das, G., Patra, J. K., Jugran, A. K., Segura-Carretero, A., & Contreras, M. M. (2019). Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 91, 362–379. https://doi.org/10.1016/j.tifs.2019.07.042
- Sand, A., Yadav, M., Mishra, D. K., & Behari, K. (2010). Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydrate Polymers, 80, 1147–1154. https://doi.org/10.1016/j.carbpol.2010.01.036
- Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
- Sonego, J. M., Santagapita, P. R., Perullini, M., & Jobbágy, M. (2016). Ca(II) and Ce(III) homogeneous alginate hydrogels from the parent alginic acid precursor: A structural study. Dalton Transactions, 45, 10050–10057. https://doi.org/10.1039/C6DT00321D
- Stănciuc, N., Oancea, A. M., Aprodu, I., Turturică, M., Barbu, V., Ionită, E., Râpeanu, G., & Bahrim, G. (2018). Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. Journal of Food Engineering, 223, 197–207. https://doi.org/10.1016/j.jfoodeng.2017.10.019
- Tavares, L., & Noreña, C. P. Z. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89, 360–369. https://doi.org/10.1016/j.foodhyd.2018.10.052
- Teng, Z., Xu, R., & Wang, Q. (2015). RSC Advances Beta-lactoglobulin-based encapsulating systems as emerging bioavailability enhancers for nutraceuticals: A review. RSC Advances, 5, 35138–35154. https://doi.org/10.1039/C5RA01814E
- Traffano-Schiffo, M. V., Aguirre Calvo, T. R., Castro-Giraldez, M., Fito, P. J., & Santagapita, P. R. (2017). Alginate beads containing lactase: Stability and microstructure. Biomacromolecules, 18, 1785–1792. https://doi.org/10.1021/acs.biomac.7b00202
- Traffano-Schiffo, M. V., Calvo, A., Avanza, M. V., & Santagapita, P. R. (2020). High-intensity ultrasound-assisted extraction of phenolic compounds from cowpea pods and its encapsulation in hydrogels. Heliyon, 6(7), e04410. https://doi.org/10.1016/j.heliyon.2020.e04410
- Traffano-Schiffo, M. V., Castro-Giraldez, M., Fito, P. J., Perullini, M., & Santagapita, P. R. (2018). Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS. Carbohydrate Polymers, 179, 402–407. https://doi.org/10.1016/j.carbpol.2017.09.096
- Vandamme, T. F., Gbassi, G. K., Nguyen, T. L., & Li, X. (2016). Microencapsulation of probiotics. In J. M. Lakkis (Ed.), Encapsulation and controlled release technologies in food systems ( 2nd ed., pp. 97–128). West Sussex, UK: John Wiley & Sons Ltd.
10.1002/9781118946893.ch5 Google Scholar
- Xie, L., Wehling, R. L., Ciftci, O., & Zhang, Y. (2017). Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Research International, 102, 195–202. https://doi.org/10.1016/j.foodres.2017.10.007
- Yildirim-Elikoglu, S., & Erdem, Y. K. (2018). Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International, 34(7), 665-697. https://doi.org/10.1080/87559129.2017.1377225
- Zazzali, I., Aguirre Calvo, T. R., Ruíz-Henestrosa, V. M. P., Santagapita, P. R., & Perullini, M. (2019). Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydrate Polymers, 206, 749–756. https://doi.org/10.1016/j.carbpol.2018.11.051
- Zhang, L., Xu, L., Tua, Z., Wang, H., Luo, J., & Ma, T. (2020). Mechanisms of isoquercitrin attenuates ovalbumin glycation: eInvestigation by spectroscopy, spectrometry and molecular docking. Food Chemistry, 309, 125667. https://doi.org/10.1016/j.foodchem.2019.125667
- Zhang, R., Guo, J., Liu, Y., Chen, S., Zhang, S., & Yu, Y. (2018). Effects of sodium salt types on the intermolecular interaction of sodium alginate/Antarctic krill protein composite fibers. Carbohydrate Polymers, 189, 72–78. https://doi.org/10.1016/j.carbpol.2018.02.013