Ligand nanovectorization using graphene to target cellular death receptors of cancer cell
Nicolas Arroyo
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Search for more papers by this authorGuillaume Herlem
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Search for more papers by this authorCorresponding Author
Fabien Picaud
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Correspondence
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, Besançon 25030, France.
Email: [email protected]
Search for more papers by this authorNicolas Arroyo
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Search for more papers by this authorGuillaume Herlem
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Search for more papers by this authorCorresponding Author
Fabien Picaud
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques, UFR Sciences Médicales et Pharmaceutiques), Centre Hospitalier Universitaire de Besançon, Besançon, France
Correspondence
Laboratoire de Nanomédecine, Imagerie et Thérapeutique, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, Besançon 25030, France.
Email: [email protected]
Search for more papers by this authorAbstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is nowadays envisaged as a natural cytokine useful in nanomedicine to eradicate the cancer cells and not the healthy surrounding ones. However, it suffers from cell resistance and strong dispersion in body to prove its efficiency. The understanding at the molecular level of the TRAIL interaction with death receptors (DRs) on cancer cells is thus of fundamental importance to improve its action. We demonstrate here via molecular simulations that TRAIL can bind to its both agonistic DRs (ie, DR4 and DR5) with a preference for DR4. In this study, the role of a graphene nanoflake as a potential cargo for TRAIL is examined. Furthermore, both TRAIL self-assembling and TRAIL affinity when adsorbed on graphene are considered to enhance efficacy toward the targeted cancer cell. Our modelization results show that TRAIL can bind to DR4 and DR5 when transported by graphene nanoflake, as a proof of concept.
REFERENCES
- 1Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975; 72(9): 3666-3670.
- 2de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ. 2016; 23: 733-747.
- 3Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets. 2007; 11(10): 1299-1314.
- 4Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014; 21(9): 1350-1364.
- 5Dimberg LY, Anderson CK, Camidge R, Behbakht K, Thorburn A, Ford HL. On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics. Oncogene. 2013; 32(11): 1341-1350.
- 6Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012; 119(3): 651-665.
- 7Lu L, Li ZJ, Li LF, et al. Vascular-targeted TNFα improves tumor blood vessel function and enhances antitumor immunity and chemotherapy in colorectal cancer. J Control Release. 2015; 210: 134-146.
- 8von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer. 2017; 17(6): 352-366.
- 9Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN. C-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem. 2005; 280(15): 14507-14513.
- 10Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol. 2001; 21(24): 8247-8254.
- 11Zakaria AB, Picaud F, Rattier T, et al. Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing. Nano Lett. 2015; 15(2): 891-895.
- 12Zakaria A, Picaud F, Guillaume YC, Gharbi T, Micheau O, Herlem G. Enhanced DR5 binding capacity of nanovectorized TRAIL compared to its cytotoxic version by affinity chromatography and molecular docking studies. J Mol Recognit. 2016; 29(9): 406-414.
- 13Godsey ME, Suryaprakash S, Leong KW. Materials innovation for co-delivery of diverse therapeutic cargos. RSC Adv. 2013; 3(47): 24794-24811.
- 14Teo PY, Cheng W, Hedrick JL, Yang YY. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev. 2016; 98: 41-63.
- 15Rochefort A, Wuest JD. Interaction of substituted aromatic compounds with graphene. Langmuir. 2009; 25(1): 210-215.
- 16Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angewandte Chemie. 2009; 48(26): 4785-4787.
- 17Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharyya D. Interaction of nucleobases with wrinkled graphene surface: dispersion corrected DFT and AFM studies. J Phys Chem C. 2012; 116(7): 4374-4379.
- 18Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale. 2011; 3(3): 1252-1257.
- 19Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006; 312(5776): 1027-1030.
- 20Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008; 1(3): 203-212.
- 21Yang X, Wang Y, Huang X, et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem. 2011; 21(10): 3448-3454.
- 22Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater. 2008; 20(18): 3557-3561.
- 23Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013; 42(2): 530-547.
- 24Mlaouah M, Tangour B, El Khalifi M, Gharbi T, Picaud F. The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study. J Mol Model. 2018; 24(4): 102.
- 25Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011; 26(12): 4637-4648.
- 26Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide-based glucose biosensors. Langmuir. 2010; 26(9): 6158-6160.
- 27Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307(5709): 538-544.
- 28Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008; 130(33): 10876-10877.
- 29Duverger E, Picaud F, Stauffer L, Sonnet P. Simulations of a graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity: from vacuum to cell membrane. ACS Appl Mater Interfaces. 2017; 9(43): 37554-37562.
- 30Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond). 2012; 7(9): 1425-1442.
- 31Ritchie DW. Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci. 2008; 9(1): 1-15.
- 32Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16): 1781-1802.
- 33Feller SE, Zhang Y, Pastor RW, Brooks BR. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys. 1995; 103(11): 4613-4621.
- 34Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98(12): 10089-10092.
- 35Liu H, Su D, Zhang J, et al. Improvement of pharmacokinetic profile of TRAIL via trimer-tag enhances its antitumor activity in vivo. Sci Rep. 2017; 7: 8953.
- 36Acik M, Chabal YJ. Nature of graphene edges: a review. Jpn J Appl Phys. 2011; 50: 070101.
- 37He K, Lee G-D, Robertson AW, Yoon E, Warner JH. Hydrogen-free graphene edges. Nat Commun. 2014; 5: 3040.
- 38Dufour F, Rattier T, Constantinescu AA, et al. TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget. 2017; 8(6): 9974-9985.
- 39von Karstedt S, Conti A, Nobis M, et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell. 2015; 27(4): 561-573.
- 40Dufour F, Rattier T, Shirley S, et al. N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death. Cell Death Differ. 2017; 24: 500-510.
- 41Kelley RF, Totpal K, Lindstrom SH, et al. Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem. 2005; 280(3): 2205-2212.
- 42Weng Q, Wang B, Wang X, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano. 2014; 8(6): 6123-6130.