Bacteria-Targeting Nanosilver-Based Antibacterial Drugs for Efficient Treatment of Drug-Resistant Bacterial-Infected Keratitis
Yufei Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAnran Li
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYe Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorShihao Hong
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYun Xue
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXianhui Song
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJie Li
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorSiyuan Huang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Xinge Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorYufei Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAnran Li
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYe Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorShihao Hong
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYun Xue
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXianhui Song
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJie Li
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorSiyuan Huang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Xinge Zhang
Nankai University Eye Institute, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
E-mail: [email protected]
Search for more papers by this authorDedicated to the 40th anniversary of the Institute of Polymer Chemistry at Nankai University
Abstract
Keratitis caused by drug-resistant bacteria is a severe condition that can lead to corneal perforation and even blindness, making effective treatment a top priority amid growing antibiotic resistance. Eye drops for anti-inflammatory treatment necessitate frequent administration of high doses throughout every day due to bacterial resistance resulting from antibiotic overuse and the low bioavailability of drugs. To overcome these issues, an antibacterial nanocomposite is prepared via conjugating random copolymers of galactose and 3-(acrylamide)phenylboronic acid to the surface of silver nanoparticles. The customized nanocomposites trigger specific binding to bacteria, resulting in excellent retention of the drug on the ocular surface, resulting in rapid and powerful killing of bacteria and inhibition of bacterial proliferation. Due to its superior drug delivery capabilities to the ocular surface, the functionalized nanocomplex markedly amplifies the anti-inflammatory efficacy, even at low doses. This effect is achieved by impeding immune cell infiltration and diminishing the synthesis of inflammatory mediators and cytokines, thereby suggesting enhanced healing properties for corneal inflammation. This study demonstrates a promising nanocomposite which is an effective and safe antibacterial strategy for bacterial keratitis with favorable prognostic and clinical conversion potential.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202300379-sup-0001-SuppMat.pdf592.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. L. Durand, Clin. Microbiol. Rev. 2017, 30, 597.
- 2T. Li, Y. Wu, W. Cai, D. Wang, C. Ren, T. Shen, D. Yu, S. Qiang, C. Hu, Z. Zhao, J. Yu, C. Peng, B. Z. Tang, Adv. Sci. 2022, 9, 2202485.
- 3S. M. Mcclintic, N. V. Prajna, M. Srinivasan, J. Mascarenhas, P. Lalitha, R. Rajaraman, C. E. Oldenburg, K. S. O'brien, K. J. Ray, N. R. Acharya, T. M. Lietman, J. D. Keenan, Invest. Ophthalmol. Visual Sci. 2014, 55, 2935.
- 4Y. Sun, J. Chan, K. Bose, C. Tam, Sci. Transl. Med. 2023, 15, eade2909.
- 5H.-Y. Lin, S.-W. Wang, J.-Y. Mao, H.-T. Chang, S. G. Harroun, H.-J. Lin, C.-C. Huang, J.-Y. Lai, Chem. Eng. J. 2021, 411, 128469.
- 6Y. Bai, Y. Hu, Y. Gao, X. Wei, J. Li, Y. Zhang, Z. Wu, X. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 33790.
- 7C. Yu, Y. Gao, Y. Zhang, J. Wang, Y. Zhang, J. Li, X. Zhang, Z. Wu, X. Zhang, Biomacromolecules 2021, 22, 3704.
- 8Y. Zhao, Q. Guo, X. Dai, X. Wei, Y. Yu, X. Chen, C. Li, Z. Cao, X. Zhang, Adv. Mater. 2019, 31, 1806024.
- 9L.-J. Luo, D. D. Nguyen, J.-Y. Lai, Biomaterials 2020, 243, 0142.
10.1016/j.biomaterials.2020.119961 Google Scholar
- 10D. D. Nguyen, L.-J. Luo, C.-J. Yang, J.-Y. Lai, ACS Nano 2022, 17, 168.
- 11Y. Zhu, S. Wu, Y. Sun, X. Zou, L. Zheng, S. Duan, J. Wang, B. Yu, R. Sui, F.-J. Xu, Adv. Funct. Mater. 2022, 32, 2111066.
- 12H.-J. Jian, R.-S. Wu, T.-Y. Lin, Y.-J. Li, H.-J. Lin, S. G. Harroun, J.-Y. Lai, C.-C. Huang, ACS Nano 2017, 11, 6703.
- 13H. Li, X. Wang, X. Zhao, G. Li, F. Pei, H. Zhang, Y. Tan, F. Chen, Small 2020, 16, 2004677.
- 14H. Chen, J. Yang, L. Sun, H. Zhang, Y. Guo, J. Qu, W. Jiang, W. Chen, J. Ji, Y.-W. Yang, B. Wang, Small 2019, 15, 1903880.
- 15E. Shirzaei Sani, A. Kheirkhah, D. Rana, Z. Sun, W. Foulsham, A. Sheikhi, A. Khademhosseini, R. Dana, N. Annabi, Sci. Adv. 2019, 5, eaav1281.
- 16X. Cheng, H. Chen, F. Yang, J. Hong, Y. Cheng, J. Hu, Bioact Mater 2022, 16, 293.
- 17C. Luschmann, W. Herrmann, O. Strauß, K. Luschmann, A. Goepferich, Int. J. Pharm. 2013, 455, 331.
- 18H. Han, Y. Gao, M. Chai, X. Zhang, S. Liu, Y. Huang, Q. Jin, A. Grzybowski, J. Ji, K. Yao, J Control Release 2020, 327, 676.
- 19Y. Yu, X. Dai, X. Wei, X. Dai, C. Yu, X. Duan, X. Zhang, C. Li, Chem. Mater. 2018, 30, 8795.
- 20J.-J. Li, Y. Hu, B. Hu, W. Wang, H. Xu, X.-Y. Hu, F. Ding, H.-B. Li, K.-R. Wang, X. Zhang, D.-S. Guo, Nat. Commun. 2022, 13, 6279.
- 21D. Hu, Y. Deng, F. Jia, Q. Jin, J. Ji, ACS Nano 2020, 14, 347.
- 22K. Zhang, Y. Du, Z. Si, Y. Liu, M. E. Turvey, C. Raju, D. Keogh, L. Ruan, S. L. Jothy, S. Reghu, K. Marimuthu, P. P. De, O. T. Ng, J. R. Mediavilla, B. N. Kreiswirth, Y. R. Chi, J. Ren, K. C. Tam, X.-W. Liu, H. Duan, Y. Zhu, Y. Mu, P. T. Hammond, G. C. Bazan, K. Pethe, M. B. Chan-Park, Nat. Commun. 2019, 10, 4792.
- 23Y. Cheng, Y. Zhang, Z. Zhao, G. Li, J. Li, A. Li, Y. Xue, B. Zhu, Z. Wu, X. Zhang, Adv. Mater. 2022, 34, 2206646.
- 24T. J. Jayeoye, O. O. Olatunde, S. Benjakul, T. Rujiralai, Colloids Surf., B 2022, 211, 112275.
- 25S. Chernousova, M. Epple, Angew. Chem., Int. Ed. 2013, 52, 1636.
- 26L. Rizzello, P. P. Pompa, Chem. Soc. Rev. 2014, 43, 1501.
- 27L.-J. Luo, T.-Y. Lin, C.-H. Yao, P.-Y. Kuo, M. Matsusaki, S. G. Harroun, C.-C. Huang, J.-Y. Lai, J. Colloid Interface Sci. 2019, 536, 112.
- 28D. D. Nguyen, L.-J. Luo, J.-Y. Lai, Mater. Sci. Eng. C 2021, 119, 111497.
- 29D. D. Nguyen, S. J. Lue, J.-Y. Lai, Colloids Surf., B 2021, 205, 111856.
- 30X. Dai, Y. Zhao, J. Li, S. Li, R. Lei, X. Chen, X. Zhang, C. Li, New J. Chem. 2018, 42, 1316.
- 31Y. Zhang, Y. Yu, G. Li, X. Zhang, Z. Wu, L. Lin, Biomacromolecules 2021, 22, 2020.
- 32A. Matsumoto, K. Yamamoto, R. Yoshida, K. Kataoka, T. Aoyagi, Y. Miyahara, Chem. Commun. 2010, 46, 2203.
- 33A. E. Ivanov, I. Y. Galaev, B. Mattiasson, Macromol. Biosci. 2005, 5, 795.
- 34D. Li, X. Tian, Z. Wang, Z. Guan, X. Li, H. Qiao, H. Ke, L. Luo, Q. Wei, Chem. Eng. J. 2020, 383, 1385.
- 35H.-J. Jian, A. Anand, J.-Y. Lai, B. Unnikrishnan, H.-T. Chang, S. G. Harroun, C.-C. Huang, ACS Appl. Mater. Interfaces 2023, 15, 26457.
- 36L. Gajdos, M. P. Blakeley, M. Haertlein, V. T. Forsyth, J. M. Devos, A. Imberty, Nat. Commun. 2022, 13, 1460.
- 37W. Wang, Y. Hu, Z. Chen, L. Yu, S. Huang, Y. Zhang, J. Li, Y. Xue, A. Li, Y. Wang, Z. Wu, X. Zhang, Adv. Funct. Mater. 2023, 33, 2300474.
- 38A. Galstyan, R. Schiller, U. Dobrindt, Angew. Chem., Int. Ed. 2017, 56, 10362.
- 39M. Chen, J. Zhang, J. Qi, R. Dong, H. Liu, D. Wu, H. Shao, X. Jiang, ACS Nano 2022, 16, 7732.
- 40N. G. Coldham, M. Webber, M. J. Woodward, L. J. V. Piddock, J. Antimicrob. Chemother. 2010, 65, 1655.
- 41D. Baskic, S. Popovic, P. Ristic, N. N. Arsenijevic, Cell Biol. Int. 2006, 30, 924.
- 42D. Davies, Nat. Rev. Drug Discovery 2003, 2, 114.
- 43H.-C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, S. Kjelleberg, Nat. Rev. Microbiol. 2016, 14, 563.
- 44X. He, J.-T. Hou, X. Sun, P. Jangili, J. An, Y. Qian, J. S. Kim, J. Shen, Adv. Funct. Mater. 2022, 32, 2203964.
- 45J. A. Levy, Trends Immunol. 2001, 22, 312.
- 46F. C. Miller, P. S. Coburn, M. M. Huzzatul, A. L. Lagrow, E. Livingston, M. C. Callegan, Prog. Retinal Eye Res. 2019, 73, 100763.
- 47A. Kumar, A. Kumar, PLoS One 2015, 10, e0128423.
- 48H.e Zhao, J. Huang, Y. Li, X. Lv, H. Zhou, H. Wang, Y. Xu, C. Wang, J. Wang, Z. Liu, Biomaterials 2020, 258, 120286.