ScY@C3v(8)-C82: Metal-Metal σ2 Bond in Mixed Rare-Earth Di-metallofullerenes†
Lihao Zheng
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Lihao Zheng and Yannick Roselló contributed equally.
Search for more papers by this authorYannick Roselló
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
Lihao Zheng and Yannick Roselló contributed equally.
Search for more papers by this authorYingjing Yan
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYang-Rong Yao
Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaolin Fan
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJosep M. Poblet
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
Search for more papers by this authorCorresponding Author
Antonio Rodríguez-Fortea
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ning Chen
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorLihao Zheng
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Lihao Zheng and Yannick Roselló contributed equally.
Search for more papers by this authorYannick Roselló
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
Lihao Zheng and Yannick Roselló contributed equally.
Search for more papers by this authorYingjing Yan
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYang-Rong Yao
Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorXiaolin Fan
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJosep M. Poblet
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
Search for more papers by this authorCorresponding Author
Antonio Rodríguez-Fortea
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007, Tarragona, Spain
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ning Chen
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorDedicated to the Special Issue of Recent Advances in Fullerene Chemistry.
Comprehensive Summary
The experimental investigation of rare-earth metal-metal bonds remains a challenge in the study of chemical bonds. Herein, we report the synthesis and characterization of a novel heteronuclear di-metallofullerene, ScY@C3v(8)-C82, which contains a mixed rare-earth metal-metal bond. ScY@C3v(8)-C82 was successfully synthesized by arc-discharging method and characterized by mass spectrometry, UV-vis-NIR spectroscopy and single-crystal X-ray diffraction crystallography, which unambiguously determined its molecular structure. Theoretical calculations were also performed to study the optimized positions of Sc-Y metallic dimer and the electronic configuration. The combined experimental and theoretical results confirmed that both Sc and Y atoms transfer two electrons to the C3v(8)-C82 cage, i.e., (ScY)4+@(C3v(8)-C82)4–. In particular, a covalent Sc-Y σ2 bond, which has never been reported before, is proven to be formed inside C3v(8)-C82 fullerene cage. This work presents a novel di-metallofullerene containing mixed rare-earth metal-metal bond and expands the understanding of metal-metal bonding of rare earth elements.
Supporting Information
Filename | Description |
---|---|
cjoc202300045-sup-0001-supinfo.pdfPDF document, 1.4 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Cotton, F. A. Strong homonuclear metal-metal bonds. Acc. Chem. Res. 1969, 2, 240–247.
- 2 Cao, C.-S.; Shi, Y.; Xu, H.; Zhao, B. Metal–metal bonded compounds with uncommon low oxidation state. Coord. Chem. Rev. 2018, 365, 122–144.
- 3 Duncan Lyngdoh, R. H.; Schaefer, H. F., 3rd ; King, R. B. Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chem. Rev. 2018, 118, 11626–11706.
- 4 Zhu, Q.; Fang, W.; Maron, L.; Zhu, C. Heterometallic Clusters with Uranium-Metal Bonds Supported by Double-Layer Nitrogen-Phosphorus Ligands. Acc. Chem. Res. 2022, 55, 1718–1730.
- 5 Hill Michael, S.; Hitchcock Peter, B.; Pongtavornpinyo, R. A Linear Homocatenated Compound Containing Six Indium Centers. Science 2006, 311, 1904–1907.
- 6 Green Shaun, P.; Jones, C.; Stasch, A. Stable Magnesium(I) Compounds with Mg-Mg Bonds. Science 2007, 318, 1754–1757.
- 7 Nguyen, T.; Sutton Andrew, D.; Brynda, M.; Fettinger James, C.; Long Gary, J.; Power Philip, P. Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. Science 2005, 310, 844–847.
- 8 Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science 2004, 305, 1136–1138.
- 9 Gamer, M. T.; Roesky, P. W.; Konchenko, S. N.; Nava, P.; Ahlrichs, R. Al-Eu and Al-Yb donor-acceptor bonds. Angew. Chem. Int. Ed. 2006, 45, 4447–4451.
- 10 Butovskii, M. V.; Döring, C.; Bezugly, V.; Wagner, F. R.; Grin, Y.; Kempe, R. Molecules containing rare-earth atoms solely bonded by transition metals. Nat. Chem. 2010, 2, 741–744.
- 11 Butovskii, M. V.; Tok, O. L.; Wagner, F. R.; Kempe, R. Bismetallocenes: lanthanoid-transition-metal bonds through alkane elimination. Angew. Chem. Int. Ed. 2008, 47, 6469–6472.
- 12 Ward, A. L.; Lukens, W. W.; Lu, C. C.; Arnold, J. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. J. Am. Chem. Soc. 2014, 136, 3647–3654.
- 13 Boronski, J. T.; Seed, J. A.; Hunger, D.; Woodward, A. W.; van Slageren, J.; Wooles, A. J.; Natrajan, L. S.; Kaltsoyannis, N.; Liddle, S. T. A crystalline tri-thorium cluster with sigma-aromatic metal-metal bonding. Nature 2021, 598, 72–75.
- 14 Hlina, J. A.; Pankhurst, J. R.; Kaltsoyannis, N.; Arnold, P. L. Metal-Metal Bonding in Uranium-Group 10 Complexes. J. Am. Chem. Soc. 2016, 138, 3333–3345.
- 15 Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. How Short is a -Ga⋮Ga- Triple Bond? Synthesis and Molecular Structure of Na2[Mes*2C6H3-Ga⋮Ga-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): The First Gallyne. J. Am. Chem. Soc. 1997, 119, 5471–5472.
- 16 Eisenhart, R. J.; Clouston, L. J.; Lu, C. C. Configuring bonds between first-row transition metals. Acc. Chem. Res. 2015, 48, 2885–2294.
- 17 Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity. Science 1964, 145, 1305–1307.
- 18 Gould, C. A.; McClain, K. R.; Reta, D.; Kragskow, J. G. C.; Marchiori, D. A.; Lachman, E.; Choi, E. S.; Analytis, J. G.; Britt, R. D.; Chilton, N. F.; Harvey, B. G.; Long, J. R. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202.
- 19 Shen, W.; Bao, L.; Lu, X. Endohedral Metallofullerenes: An Ideal Platform of Sub-Nano Chemistry. Chin. J. Chem. 2022, 40, 275–284.
- 20 Yamada, M.; Kurihara, H.; Suzuki, M.; Saito, M.; Slanina, Z.; Uhlik, F.; Aizawa, T.; Kato, T.; Olmstead, M. M.; Balch, A. L.; Maeda, Y.; Nagase, S.; Lu, X.; Akasaka, T. Hiding and Recovering Electrons in a Dimetallic Endohedral Fullerene: Air-Stable Products from Radical Additions. J. Am. Chem. Soc. 2015, 137, 232–238.
- 21 Bao, L.; Chen, M.; Pan, C.; Yamaguchi, T.; Kato, T.; Olmstead, M. M.; Balch, A. L.; Akasaka, T.; Lu, X. Crystallographic Evidence for Direct Metal-Metal Bonding in a Stable Open-Shell La2@Ih-C80 Derivative. Angew. Chem. Int. Ed. 2016, 55, 4242–4246.
- 22 Liu, F.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Buchner, B.; Popov, A. A. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 2017, 8, 16098.
- 23 Liu, F.; Velkos, G.; Krylov, D. S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N. A.; Chen, C. H.; Rosenkranz, M.; Schiemenz, S.; Ziegs, F.; Nenkov, K.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Richter, M.; Buchner, B.; Avdoshenko, S. M.; Popov, A. A. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal-metal bond. Nat. Commun. 2019, 10, 571.
- 24 Zaripov, R. B.; Kandrashkin, Y. E.; Salikhov, K. M.; Buchner, B.; Liu, F.; Rosenkranz, M.; Popov, A. A.; Kataev, V. Unusually large hyperfine structure of the electron spin levels in an endohedral dimetallofullerene and its spin coherent properties. Nanoscale 2020, 12, 20513–20521.
- 25 Zuo, T.; Xu, L.; Beavers, C. M.; Olmstead, M. M.; Fu, W.; Crawford, T. D.; Balch, A. L.; Dorn, H. C. M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M-M bonding interactions inside aza[80]fullerene cages. J. Am. Chem. Soc. 2008, 130, 12992–12997.
- 26 Fu, W.; Zhang, J.; Fuhrer, T.; Champion, H.; Furukawa, K.; Kato, T.; Mahaney, J. E.; Burke, B. G.; Williams, K. A.; Walker, K.; Dixon, C.; Ge, J.; Shu, C.; Harich, K.; Dorn, H. C. Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J. Am. Chem. Soc. 2011, 133, 9741–9750.
- 27 Wang, Y.; Xiong, J.; Su, J.; Hu, Z.; Ma, F.; Sun, R.; Tan, X.; Sun, H. L.; Wang, B. W.; Shi, Z.; Gao, S. Dy2@C79N: a new member of dimetalloazafullerenes with strong single molecular magnetism. Nanoscale 2020, 12, 11130–11135.
- 28 Shen, W.; Bao, L.; Wu, Y.; Pan, C.; Zhao, S.; Fang, H.; Xie, Y.; Jin, P.; Peng, P.; Li, F. F.; Lu, X. Lu2@C2n (2n = 82, 84, 86): Crystallographic Evidence of Direct Lu-Lu Bonding between Two Divalent Lutetium Ions Inside Fullerene Cages. J. Am. Chem. Soc. 2017, 139, 9979–9984.
- 29 Hu, S.; Shen, W.; Yang, L.; Duan, G.; Jin, P.; Xie, Y.; Akasaka, T.; Lu, X. Crystallographic and Theoretical Investigations of Er2@C2n (2n = 82, 84, 86): Indication of Distance-Dependent Metal-Metal Bonding Nature. Chem. - Eur. J. 2019, 25, 11538–11544.
- 30 Yao, Y.-R.; Shi, X.-M.; Zheng, S.-Y.; Chen, Z.-C.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Atomically Precise Insights into Metal–Metal Bonds Using Comparable Endo-Units of Sc2 and Sc2C2. CCS Chem. 2021, 3, 294–302.
- 31 Pan, C.; Shen, W.; Yang, L.; Bao, L.; Wei, Z.; Jin, P.; Fang, H.; Xie, Y.; Akasaka, T.; Lu, X. Crystallographic characterization of Y2C2n (2n = 82, 88–94): direct Y–Y bonding and cage-dependent cluster evolution. Chem. Sci. 2019, 10, 4707–4713.
- 32 Komaki, T. K., T.; Miyake, Y.; Suzuki, S.; Kikuchi, K.; Achiba, Y. Production and 13C NMR Characterization of CeLa@C80. Abstracts. Fullerene, Nanotubes Gen. Symp. 2005, 28, 128.
- 33 Ito, M. N., S.; Kodama, T.; Miyake, Y.; Suzuki, S. 13C NMR Study of Pr2@C80 and LaPr@C80. Abstracts. Fullerene, Nanotubes Gen. Symp. 2008, 34, 29.
- 34 Plant, S. R.; Ng, T. C.; Warner, J. H.; Dantelle, G.; Ardavan, A.; Briggs, G. A.; Porfyrakis, K. A bimetallic endohedral fullerene: PrSc@C80. Chem. Commun. 2009, 4082–4084.
- 35 Kikuchi, K.; Akiyama, K.; Sakaguchi, K.; Kodama, T.; Nishikawa, H.; Ikemoto, I.; Ishigaki, T.; Achiba, Y.; Sueki, K.; Nakahara, H. Production and isolation of the isomers of dimetallofulerenes, HoTm@C82 and Tm2@C82. Chem. Phys. Lett. 2000, 319, 472–476.
- 36 Sakaguchi, K.; Fujii, R.; Kodama, T.; Nishikawa, H.; Ikemoto, I.; Achiba, Y.; Kikuchi, K. Production and Characterization of Heteroatom-encapsulated Metallofullerene, CaHo@C82. Chem. Lett. 2007, 36, 832–833.
- 37 Popov, A. A. Redox-active metal-metal bonds between lanthanides in dimetallofullerenes. Curr. Opin. Electrochem. 2018, 8, 73–80.
- 38 Nie, M.; Yang, L.; Zhao, C.; Meng, H.; Feng, L.; Jin, P.; Wang, C.; Wang, T. A luminescent single-molecule magnet of dimetallofullerene with cage-dependent properties. Nanoscale 2019, 11, 18612–18618.
- 39 Samoylova, N. A.; Avdoshenko, S. M.; Krylov, D. S.; Thompson, H. R.; Kirkhorn, A. C.; Rosenkranz, M.; Schiemenz, S.; Ziegs, F.; Wolter, A. U. B.; Yang, S.; Stevenson, S.; Popov, A. A. Confining the spin between two metal atoms within the carbon cage: redox-active metal–metal bonds in dimetallofullerenes and their stable cation radicals. Nanoscale 2017, 9, 7977–7990.
- 40
Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U.K., 1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 41 Outeiral, C.; Vincent, M. A.; Martín Pendás, Á.; Popelier, P. L. A. Revitalizing the concept of bond order through delocalization measures in real space. Chem. Sci. 2018, 9, 5517–5529.
- 42 Popov, A. A.; Dunsch, L. Bonding in Endohedral Metallofullerenes as Studied by Quantum Theory of Atoms in Molecules. Chem. - Eur. J. 2009, 15, 9707–9729.
- 43 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
- 44 Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
- 45 te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967.
- 46 Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.
- 47 Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.
- 48 Van Lenthe, E.; Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156.
- 49 Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Citing Literature
1 August, 2023
Pages 1809-1814