Visualization of Mass Transfer during Droplet Formation
Jens Stefan Heine
TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany
Correspondence: Hans-Jörg Bart ([email protected]), TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany.Search for more papers by this authorJens Stefan Heine
TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany
Search for more papers by this authorCorresponding Author
Hans-Jörg Bart
TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany
Correspondence: Hans-Jörg Bart ([email protected]), TU Kaiserslautern, Chair of Separation and Technology, Gottlieb-Daimler-Strasse 44, PO Box 3049, 67653 Kaiserslautern, Germany.Search for more papers by this authorAbstract
The impact of mass transfer in liquid-liquid extraction during droplet formation in a quiescent continuous phase was investigated. The impact of droplet size, concentration, and formation rate on a hanging droplet was analyzed via laser induced fluorescence (LIF) using rhodamine 6G as tracer in the system of toluene and acetone in water. The droplet formation rate has a major impact on mass transfer and the mixing pattern inside the droplet. Very fast mass transfer induced by Marangoni convection was visualized at a high local resolution independently of concentration and formation rate.
References
- 1
C. Marangoni, Ann. Phys. Chem.
1871, 219 (7), 337. DOI: https://doi.org/10.1002/andp.18712190702
10.1002/andp.18712190702 Google Scholar
- 2 R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles, 3rd ed., Academic Press, New York 1992.
- 3 W. Licht, J. Conway, Ind. Eng. Chem. 1950, 42 (6), 1151.
- 4 W. Licht, W. Pansing, Ind. Eng. Chem. 1953, 45 (9), 1885.
- 5 H. P. Khadamkar, M. A. Khanwale, S. S. Sawant, C. S. Mathpati, Chem. Eng. Sci. 2017, 170, 176. DOI: https://doi.org/10.1016/j.ces.2017.02.016
- 6 J. Wang, Z. Wang, P. Lu, C. Yang, Z.-S. Mao, AIChE J. 2011, 57 (10), 2670. DOI: https://doi.org/10.1002/aic.12494
- 7 M. Henschke, A. Pfennig, AIChE J. 1999, 45 (10), 2079. DOI: https://doi.org/10.1002/aic.690451006
- 8 J. Chen, C. Yang, Z.-S. Mao, Eur. Phys. J. Special Topics 2015, 224 (2), 389. DOI: https://doi.org/10.1140/epjst/e2015-02368-0
- 9 K. H. Javed, J. D. Thornton, T. J. Anderson, AIChE J. 1989, 35 (7), 1125. DOI: https://doi.org/10.1002/aic.690350708
- 10 J. B. Lewis, Chem. Eng. Sci. 1954, 3 (6), 260. DOI: https://doi.org/10.1016/0009-2509(54)80008-X
- 11 L. Steiner, G. Oezdemir, S. Hartland, Ind. Eng. Chem. Res. 1990, 29 (7), 1313. DOI: https://doi.org/10.1021/ie00103a034
- 12 M. Wegener, J. Grünig, J. Stüber, A. R. Paschedag, M. Kraume, Chem. Eng. Sci. 2007, 62 (11), 2967. DOI: https://doi.org/10.1016/j.ces.2007.03.003
- 13 R. T. Eiswirth, Binary Coalescence of Free Rising Droplets, Dissertation, TU Kaiserslautern, 2014.
- 14 M. Henschke, Auslegung pulsierter Siebboden-Extraktionskolonnen, Habilitation, RWTH Aachen, 2004.
- 15 M. Henschke, Chem. Eng. J. 2002, 85 (2–3), 369. DOI: https://doi.org/10.1016/S1385-8947(01)00251-0
- 16 H. Sawistowski, B. R. James, Chem. Ing. Tech. 1963, 35 (3), 175. DOI: https://doi.org/10.1002/cite.330350310
- 17 W. K. Lewis, W. G. Whitman, Ind. Eng. Chem. 1924, 16 (12), 1215. DOI: https://doi.org/10.1021/ie50180a002
- 18 K. Schulze, A. Paschedag, M. Kraume, in Conf. on Transport Phenomena with Moving Boundaries, Berlin, October 2003.
- 19 J. Temos, H. R. C. Pratt, G. W. Stevens, Chem. Eng. Sci. 1996, 51 (1), 27. DOI: https://doi.org/10.1016/0009-2509(95)00224-3
- 20 S. A. Schmidt, M. Simon, H.-J. Bart, Chem. Ing. Tech. 2003, 75 (12), 62. DOI: https://doi.org/10.1002/cite.200390023
- 21 M. Wegener, M. Fevre, A. R. Paschedag, M. Kraume, Int. J. Heat Mass Transfer 2009, 52 (11–12), 2543. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.11.022
- 22 K. Bäumler, Simulation of single drops with variable interfacial tension, Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014.
- 23 F. H. Garner, A. H. P. Skelland, Chem. Eng. Sci. 1955, 4 (4), 149. DOI: https://doi.org/10.1016/0009-2509(55)85017-8
- 24 A. Amar, E. Gross-Hardt, A. A. Khrapitchev, S. Stapf, A. Pfennig, B. Blümich, J. Magn. Reson. 2005, 177 (1), 74. DOI: https://doi.org/10.1016/j.jmr.2005.07.014
- 25
K. E. Spells, Proc. Phys. Soc.
1952, B 65, 541.
10.1088/0370-1301/65/7/310 Google Scholar
- 26 K. Schulze, M. Kraume, A. R. Paschedag, Chem. Ing. Tech. 2004, 76 (9), 1405. DOI: https://doi.org/10.1002/cite.200490303
- 27 K. Schulze, Stoffaustuasch und Fluiddynamik am bewegten Einzeltropfen unter dem Einfluss von Marangonikonvektion, Dissertation, TU Berlin, 2007.
- 28 J. S. Heine, H.-J. Bart, Chem. Ing. Tech. 2017, 89 (12), 1635. DOI: https://doi.org/10.1002/cite.201700045
- 29 M. W. Hlawitschka, Computational Fluid Dynamics Aided Design of Stirred Liquid Extraction Columns, Dissertation, TU Kaiserslautern, 2013.
- 30 J. Sakakibara, R. J. Adrian, Exp. Fluids 1999, 26 (1–2), 7. DOI: https://doi.org/10.1007/s003480050260
- 31 M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, A. A. van Steenhoven, Exp. Fluids 1999, 27 (5), 420. DOI: https://doi.org/10.1007/s003480050367
- 32 T. Lacassagne, S. Simoëns, M. El Hajem, J.-Y. Champagne, Exp. Fluids 2018, 59 (1), 243. DOI: https://doi.org/10.1007/s00348-017-2475-y
- 33 G. Gouesbet, G. Gréhan, Int. J. Multiphase Flow 2015, 72, 288. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.07.001
- 34 P. Mavros, Chem. Eng. Res. Des. 2001, 79 (2), 113. DOI: https://doi.org/10.1205/02638760151095926
- 35 A. Dani, P. Guiraud, A. Cockx, Chem. Eng. Sci. 2007, 62 (24), 7245. DOI: https://doi.org/10.1016/j.ces.2007.08.047
- 36 F. Lemoine, M. Wolff, M. Lebouche, Exp. Fluids 1996, 20 (5), 319. DOI: https://doi.org/10.1007/BF00191013
- 37 A. Lehwald, G. Janiga, D. Thévenin, K. Zähringer, Chem. Eng. Sci. 2012, 79, 8. DOI: https://doi.org/10.1016/j.ces.2012.05.026
- 38 M. W. Hlawitschka, H.-J. Bart, Chem. Eng. Sci. 2012, 69 (1), 138. DOI: https://doi.org/10.1016/j.ces.2011.10.019
- 39 G. Gneist, S. Schollenberger, H.-J. Bart, Chem. Ing. Tech. 2004, 76 (8), 1072. DOI: https://doi.org/10.1002/cite.200400079
- 40 Z. Wang, P. Lu, Y. Wang, C. Yang, Z.-S. Mao, AIChE J. 2013, 59 (11), 4424. DOI: https://doi.org/10.1002/aic.14161
- 41 M. Wegener, Der Einfluss der konzentrationsinduzierten Marangonikonvektion auf den instationären Impuls- und Stofftransport an Einzeltropfen, Dissertation, Technische Universität Berlin, 2009.
- 42 A. Javadi, D. Bastani, M. Taeibi-Rahni, AIChE J. 2006, 52 (3), 895. DOI: https://doi.org/10.1002/aic.10694
- 43 M. Wegener, N. Paul, M. Kraume, Int. J. Heat Mass Transfer 2014, 71, 475. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.024
- 44 F. Gebauer, M. W. Hlawitschka, H.-J. Bart, Chin. J. Chem. Eng. 2016, 24 (2), 249. DOI: https://doi.org/10.1016/j.cjche.2015.07.024
- 45 T. Míšek, R. Berger, J. Schröter, Standard Test Systems for Liquid Extraction, 2nd ed., Institution of Chemical Engineers, Rugby 1985.
- 46 L. Hohl, R. P. Panckow, J. M. Schulz, N. Jurtz, L. Böhm, M. Kraume, Chem. Ing. Tech. 2018, 90 (11), 1709. DOI: https://doi.org/10.1002/cite.201800079
- 47 G. Gneist, Untersuchung des Einflusses hochfrequenter elektrischer Felder auf die Hydrodynamik und den Stoffaustausch in der Extraktion, Dissertation, TU Kaiserslautern, 2003.