Stilbene ligand-based metal–organic frameworks for efficient dye adsorption and nitrobenzene detection
Jiyun Kim
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorChanju Na
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorYounghu Son
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorMani Prabu
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorCorresponding Author
Minyoung Yoon
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Correspondence
Minyoung Yoon, Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
Email: [email protected]
Search for more papers by this authorJiyun Kim
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorChanju Na
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorYounghu Son
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorMani Prabu
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Search for more papers by this authorCorresponding Author
Minyoung Yoon
Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu, Republic of Korea
Correspondence
Minyoung Yoon, Department of Chemistry, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
Email: [email protected]
Search for more papers by this authorJiyun Kim and Chanju Na contributed equally to this study.
Abstract
The technological developments of metal–organic framework (MOF) for selective adsorption and sensing have been achieved in recent years. Herein, we report two stilbene-based MOFs, denoted as Zn3(SDC)3(bpy) (1) and Zn(SDC)(bpy)·2DMF (2). MOFs 1 and 2 were synthesized in pure form by controlling the organic linker ratio and were used for the adsorptive removal of dye molecules. Despite their low adsorption capacities, the MOFs were more selective toward cationic dye (methylene blue) than anionic dye (methyl orange). The unique fluorescent property of the MOFs was harnessed for the sensing of harmful organic molecules. Interestingly, the fluorescence of 1′ was quenched by aromatic analytes containing amine and nitro functional groups. However, 2′ only showed modest fluorescence quenching by nitrobenzene. The quenching efficiency of nitrobenzene had a low detection limit for 1′ and 2′ (14.28 and 25.42 μM, respectively). These MOFs can be used as adsorbents and highly sensitive chemical sensors.
Supporting Information
Filename | Description |
---|---|
bkcs12683-sup-0001-Supinfo.pdfPDF document, 1.1 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Marimuthu, A. J. Antonisamy, S. Malayandi, K. Rajendran, P.-C. Tsai, A. Pugazhendhi, V. K. Ponnusamy, J. Photochem. Photobiol. B Biol. 2020, 205, 111823.
- 2A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, M. Rafatullah, RSC Adv. 2015, 5, 30801.
- 3M. Beydaghdari, F. H. Saboor, A. Babapoor, V. V. Karve, M. Asgari, Energies 2023, 2022, 15.
- 4M. E. Germain, M. J. Knapp, Chem. Soc. Rev. 2009, 38, 2543.
- 5R. Calvo, K. Zhang, A. Passera, D. Katayev, Nat. Commun. 2019, 10, 3410.
- 6R. Benigni, L. Passerini, Mutat. Res. Rev. Mutat. Res. 2002, 511, 191.
- 7P. Vineis, R. Pirastu, Cancer Causes Control 1997, 8, 346.
- 8X. Zhang, X. Liu, R. Lu, H. Zhang, P. Gong, J. Mater. Chem. 2012, 22, 1167.
- 9V. Manolasya, M. Soumya, G. H. Reddy, T. Sowjanyalakshmi, B. Sreevidya, D. T. Katyarmal, J. Clin. Sci. Res. 2019, 8, 159.
10.4103/JCSR.JCSR_63_19 Google Scholar
- 10S. M. Bradberry, T.-C. Aw, N. R. Williams, J. A. Vale, Occup. Environ. Med. 2001, 58, 611.
- 11J.-S. Qin, S.-J. Bao, P. Li, W. Xie, D.-Y. Du, L. Zhao, Y.-Q. Lan, Z.-M. Su, Chem. Asian J. 2014, 9, 749.
- 12S. Xie, H. Wang, Z. Liu, R. Dai, L. Huang, RSC Adv. 2015, 5, 7121.
- 13X.-L. Huang, L. Liu, M.-L. Gao, Z.-B. Han, RSC Adv. 2016, 6, 87945.
- 14H.-C. J. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415.
- 15J. H. Yoon, W. R. Lee, J. T. Lee, J. H. Song, G. Lee, K. S. Lim, Bull. Korean Chem. Soc. 2022, 43, 1136.
- 16M.-J. Kim, J. Shim, K.-S. Lee, Y.-E. Sung, Bull. Korean Chem. Soc. 2021, 42, 919.
- 17K. Lee, J. Park, I. Song, S. M. Yoon, Bull. Korean Chem. Soc. 2021, 42, 1170.
- 18D. H. Hong, H. S. Shim, J. Ha, H. R. Moon, Bull. Korean Chem. Soc. 2021, 42, 956.
- 19M. D. Allendorf, C. A. Bauer, R. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
- 20H. Zhang, C. Lin, T. Sheng, S. Hu, C. Zhuo, R. Fu, Y. Wen, H. Li, S. Su, X. Wu, Chem. Eur. J. 2016, 22, 4460.
- 21Y. Son, P. C. Rao, J. Kim, G. Park, M. Yoon, Bull. Korean Chem. Soc. 2021, 42, 810.
- 22M. Y. Zorainy, M. Gar Alalm, S. Kaliaguine, D. C. Boffito, J. Mater. Chem. A 2021, 9, 22159.
- 23S. Leubner, R. Stäglich, J. Franke, J. Jacobsen, J. Gosch, R. Siegel, H. Reinsch, G. Maurin, J. Senker, P. G. Yot, N. Stock, Chem. Eur. J. 2020, 26, 3877.
- 24R. Seetharaj, P. V. Vandana, P. Arya, S. Mathew, Arabian J. Chem. 2019, 12, 295.
- 25M. R. Zakaria, M. F. Omar, H. M. Akil, M. M. A. B. Abdullah, Evergreen 2020, 7, 538.
- 26K.-L. Huang, X. Liu, G.-M. Liang, Inorg. Chim. Acta 2009, 362, 1565.
- 27Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
- 28X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 2015, 44, 8019.
- 29K. Müller-Buschbaum, F. Beuerle, C. Feldmann, Microporous Mesoporous Mater. 2015, 216, 171.
- 30X. Yang, Y. Ren, X. Hou, Z. Wang, J. Solid State Chem. 2021, 302, 122410.
- 31X.-L. Chen, L. Shang, L. Liu, H. Yang, H.-L. Cui, J.-J. Wang, Dyes Pigm. 2021, 196, 109809.
- 32D. Zhao, S. Yu, W.-J. Jiang, Z.-H. Cai, D.-L. Li, Y.-L. Liu, Z.-Z. Chen, Molecules 2022, 27, 2226.
- 33U. Ryu, S. Jee, P. C. Rao, J. Shin, C. Ko, M. Yoon, K. S. Park, K. M. Choi, Coord. Chem. Rev. 2021, 426, 213544.
- 34G.-L. Yang, X.-L. Jiang, H. Xu, B. Zhao, Small 2021, 17, 2005327.
- 35X.-G. Liu, C.-L. Tao, H.-Q. Yu, B. Chen, Z. Liu, G.-P. Zhu, Z. Zhao, L. Shen, B. Z. Tang, J. Mater. Chem. C 2018, 6, 2983.
- 36X. Liang, Y. Jia, Z. Zhan, M. Hu, Appl. Organomet. Chem. 2019, 33, e4988.
- 37Y. Rachuri, B. Parmar, K. K. Bishta, E. Suresh, Dalton Trans. 2016, 45, 7881.
- 38P. Karthik, A. Pandikumar, M. Preeyangha, M. Kowsaly, B. Neppolian, Microchim. Acta 2017, 184, 2265.
- 39S. Xu, Y. Ni, Analyst 2019, 144, 1687.
- 40M. Zhang, L. Zhang, Z. Xiao, Q. Zhang, R. Wang, F. Dai, D. Sun, Sci. Rep. 2016, 6, 20672.
- 41K. Wu, J. Hu, X. Cheng, J. Li, C. Zhou, J. Lumin. 2020, 219, 116908.