Cesium Cyclopropane Acid-Aided Crystal Growth Enables Efficient Inorganic Perovskite Solar Cells with a High Moisture Tolerance
Yaochang Yue
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorRongshen Yang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorWeichao Zhang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorQian Cheng
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Huiqiong Zhou
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yuan Zhang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorYaochang Yue
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorRongshen Yang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorWeichao Zhang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorQian Cheng
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Huiqiong Zhou
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Yuan Zhang
Heeger Research and Development Center, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorGraphical Abstract
Using cesium cyclopropane acids (C3) gives high crystallization quality in an all-inorganic perovskite CsPbI2Br prepared in a wide ambient moisture window (RH: 25–65 %). The resultant CsPbI2Br solar cells exhibit a high efficiency (>17 %) and excellent environmental stability. The vaporization enthalpy of the side product DMA-acid (adjustable by C3 loads) modifies the perovskite crystallization and device performance under different humidity.
Abstract
While all-inorganic halide perovskites (iHPs) are promising photovoltaic materials, the associated water sensitivity of iHPs calls for stringent humidity control to reach satisfactory photovoltaic efficiencies. Herein, we report a moisture-insensitive perovskite formation route under ambient air for CsPbI2Br-based iHPs via cesium cyclopropane acids (C3) as a compound introducer. With this approach, appreciably enhanced crystallization quality and moisture tolerance of CsPbI2Br are attained. The improvements are attributed to the modified evaporation enthalpy of the volatile side product of DMA-acid initiated by Cs-acids. As such, the water-involving reaction is directed toward the DMA-acids, leaving the target CsPbI2Br perovskites insensitive to ambient humidity. We highlight that by controlling the C3 concentration, the dependence of power conversion efficiency (PCE) in CsPbI2Br devices on the humidity level during perovskite film formation becomes favorably weakened, with the PCEs remaining relatively high (>15 %) associated with improved device stability for RH levels changed from 25 % to 65 %. The champion solar cells yield an impressive PCE exceeding 17 %, showing small degradations (<10 %) for 2000 hours of shell storage and 300 hours of 85/85 (temperature/humidity) tests. The demonstrated C3-based strategy provides an enabler for improving the long-sought moisture-stability of iHPs toward high photovoltaic device performance.
Conflict of interest
The authors declare no competing interests.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202315717-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Park, J. Kim, H. S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2023, 616, 724–730.
- 2J. Liu, M. De Bastiani, E. Aydin, G. T. Harrison, Y. J. Gao, R. R. Pradhan, M. K. Eswaran, M. Mandal, W. B. Yan, A. Seitkhan, M. Babics, A. S. Subbiah, E. Ugur, F. Z. Xu, L. J. Xu, M. C. Wang, A. U. Rehman, A. Razzaq, J. X. Kang, R. Azmi, A. A. Said, F. H. Isikgor, T. G. Allen, D. Andrienko, U. Schwingenschlogl, F. Laquai, S. De Wolf, Science 2022, 377, 302–306.
- 3
- 3aT. A. S. Doherty, S. Nagane, D. J. Kubicki, Y. K. Jung, D. N. Johnstone, A. N. Iqbal, D. Y. Guo, K. Frohna, M. Danaie, E. M. Tennyson, S. Macpherson, A. Abfalterer, M. Anaya, Y. H. Chiang, P. Crout, F. S. Ruggeri, S. Collins, C. P. Grey, A. Walsh, P. A. Midgley, S. D. Stranks, Science 2021, 374, 1598;
- 3bL. Bi, Q. Fu, Z. Zeng, Y. Wang, F. R. Lin, Y. Cheng, H. L. Yip, S. W. Tsang, A. K. Jen, J. Am. Chem. Soc. 2023, 145, 5920–5929.
- 4T. Wang, J. Yang, Q. Cao, X. Pu, Y. Li, H. Chen, J. Zhao, Y. Zhang, X. Chen, X. Li, Nat. Commun. 2023, 14, 1342.
- 5
- 5aC. Ma, F. T. Eickemeyer, S. H. Lee, D. H. Kang, S. J. Kwon, M. Gratzel, N. G. Park, Science 2023, 379, 173–178;
- 5bY. H. Song, J. Ge, L. B. Mao, K. H. Wang, X. L. Tai, Q. Zhang, L. Tang, J. M. Hao, J. S. Yao, J. J. Wang, T. Ma, J. N. Yang, Y. F. Lan, X. C. Ru, L. Z. Feng, G. Zhang, Y. Lin, Q. Zhang, H. B. Yao, Sci. Adv. 2022, 8, eabq2321.
- 6J. A. Steele, T. Braeckevelt, V. Prakasam, G. Degutis, H. Yuan, H. Jin, E. Solano, P. Puech, S. Basak, M. I. Pintor-Monroy, H. Van Gorp, G. Fleury, R. X. Yang, Z. Lin, H. Huang, E. Debroye, D. Chernyshov, B. Chen, M. Wei, Y. Hou, R. Gehlhaar, J. Genoe, S. De Feyter, S. M. J. Rogge, A. Walsh, E. H. Sargent, P. Yang, J. Hofkens, V. Van Speybroeck, M. B. J. Roeffaers, Nat. Commun. 2022, 13, 7513.
- 7M. A. Green, Joule 2019, 3, 631–633.
- 8Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou, Q. Chen, Joule 2018, 2, 1559–1572.
- 9
- 9aX. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma, Z. Qu, Y. Zhao, Z. Yin, H.-X. Deng, X. Zhang, J. You, Nat. Energy 2023, 8, 372–380;
- 9bJ. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang, D. Xu, Z. Fang, X. Lei, Y. Li, S. F. Liu, Adv. Mater. 2023, 35, 2210223;
- 9cY. Cui, J. Shi, F. Meng, B. Yu, S. Tan, S. He, C. Tan, Y. Li, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Mater. 2022, 34, 2205028.
- 10
- 10aJ. Wu, M. H. Li, Y. Jiang, Q. Xu, L. Xian, H. Guo, J. Wan, R. Wen, Y. Fang, D. Xie, Y. Lei, J. S. Hu, Y. Lin, ACS Nano 2022, 16, 15063–15071;
- 10bG. H. Dun, H. Zhang, K. Qin, X. Tan, R. Zhao, M. Chen, Y. Huang, X. S. Geng, Y. Y. Li, Y. Li, P. Wan, G. Y. Gou, Q. X. Feng, X. R. Zheng, R. Liang, D. Xie, Y. Zhou, X. Wang, H. Tian, Y. Yang, T. L. Ren, ACS Nano 2022, 16, 10199–10208.
- 11
- 11aY. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 2015, 137, 15907–15914;
- 11bX. Wang, X. Ran, X. Liu, H. Gu, S. Zuo, W. Hui, H. Lu, B. Sun, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Angew. Chem. Int. Ed. 2020, 59, 13354–13361.
- 12
- 12aW. Wang, T. Ghosh, H. Yan, I. Erofeev, K. Zhang, K. P. Loh, U. Mirsaidov, J. Am. Chem. Soc. 2022, 144, 17848–17856;
- 12bL. Yang, H. Zhou, Y. Duan, M. Wu, K. He, Y. Li, D. Xu, H. Zou, S. Yang, Z. Fang, S. Liu, Z. Liu, Adv. Mater. 2023, 35, 2211545;
- 12cW. Cheng, X. He, J. G. Wang, W. Tian, L. Li, Adv. Mater. 2022, 34, 2208325.
- 13S. S. Mali, J. V. Patil, J.-Y. Shao, Y.-W. Zhong, S. R. Rondiya, N. Y. Dzade, C. K. Hong, Nat. Energy 2023, 8, 989–1001.
- 14
- 14aX. Wang, Y. Wang, Y. Chen, X. Liu, Y. Zhao, Adv. Mater. 2021, 33, 2103688;
- 14bS. Lim, S. Han, D. Kim, J. Min, J. Choi, T. Park, Adv. Mater. 2023, 35, 2203430.
- 15
- 15aJ. Song, H. Xie, E. L. Lim, A. Hagfeldt, D. Bi, Adv. Energy Mater. 2022, 12, 2201854;
- 15bX. Liu, H. Lian, Z. Zhou, C. Zou, J. Xie, F. Zhang, H. Yuan, S. Yang, Y. Hou, H. G. Yang, Adv. Energy Mater. 2022, 12, 2103933.
- 16
- 16aY. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You, Science 2022, 377, 531–534;
- 16bB. Wang, Q. Cheng, G. Huang, Y. Yue, W. Zhang, X. Li, Y. Li, W. Du, X. Liu, H. Zhang, Y. Zhang, H. Zhou, Adv. Mater. 2022, 35, 2207345.
- 17K. J. Chua, J. C. Ho, S. K. Chou, Energy Buildings 2007, 39, 537–545.
- 18Y. Yue, J. Zhou, Q. Cheng, X. Zhang, B. Wang, Y. Li, S. Li, R. Cao, K. Wang, H. Wang, H. Zhou, Y. Zhang, J. Phys. Chem. Lett. 2021, 12, 11228–11237.
- 19G. Zhang, J. Zhang, Z. Yang, Z. Pan, H. Rao, X. Zhong, Adv. Mater. 2022, 34, 2206222.
- 20
- 20aK. Rabiei, Z. Mohammadkhani, H. Keypour, J. Kouhdareh, RSC Adv. 2023, 13, 8114–8129;
- 20bH. Goudarzi, L. Koutsokeras, A. H. Balawi, C. Sun, G. K. Manolis, N. Gasparini, Y. Peisen, G. Antoniou, S. Athanasopoulos, C. C. Tselios, P. Falaras, C. Varotsis, F. Laquai, J. Cabanillas-Gonzalez, P. E. Keivanidis, Chem. Sci. 2023, 14, 2009–2023.
- 21B. Tran, S. T. Milner, M. J. Janik, ACS Catal. 2022, 12, 13193–13206.
- 22X. Wei, M. Xiao, B. Wang, C. Wang, Y. Li, J. Dou, Z. Cui, J. Dou, H. Wang, S. Ma, C. Zhu, G. Yuan, N. Yang, T. Song, H. Zhou, H. Chen, Y. Bai, Q. Chen, Angew. Chem. Int. Ed. 2022, 61, 202204314.
- 23
- 23aY. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 16691–16696;
- 23bA. Mancini, P. Quadrelli, G. Amoroso, C. Milanese, M. Boiocchi, A. Sironi, M. Patrini, G. Guizzetti, L. Malavasi, J. Solid State Chem. 2016, 240, 55–60;
- 23cY. Pei, Y. Liu, F. Li, S. Bai, X. Jian, M. Liu, iScience 2019, 15, 165–172.
- 24S. Pratap, E. Keller, P. Muller-Buschbaum, Nanoscale 2019, 11, 3495–3499.
- 25G. Huang, J. Chen, B. Wang, Q. Cheng, Y. Li, S. U. Zafar, T. Yue, Y. Yan, W. Du, H. Zhang, X. Liu, Y. Zhang, H. Zhou, Nano Lett. 2022, 22, 7545–7553.
- 26
- 26aB. Li, D. Binks, G. Cao, J. Tian, Small 2019, 15, e1903613;
- 26bM. Jung, S. G. Ji, G. Kim, S. I. Seok, Chem. Soc. Rev. 2019, 48, 2011–2038.
- 27S. Wu, F. Zabihi, R. Y. Yeap, M. R. Y. Darestani, A. Bahi, Z. Wan, S. Yang, P. Servati, F. K. Ko, ACS Nano 2023, 17, 1022–1035.
- 28T. Zhang, K. Deng, P. Zhang, P. Xie, R. Zhang, Chemistry 2006, 12, 3630–3635.
- 29Y. Zhao, M. Tripathi, K. Cernevics, A. Avsar, H. G. Ji, J. F. Gonzalez Marin, C. Y. Cheon, Z. Wang, O. V. Yazyev, A. Kis, Nat. Commun. 2023, 14, 44.
- 30Y. Meng, Y. Zhang, Z. Lai, W. Wang, W. Wang, Y. Li, D. Li, P. Xie, D. Yin, D. Chen, C. Liu, S. Yip, J. C. Ho, Nano Lett. 2023, 23, 812–819.
- 31
- 31aQ. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao, Z. Chu, Z. Yin, P. Gao, X. Zhang, J. You, Adv. Mater. 2019, 31, e1905143;
- 31bC. Ran, W. Gao, J. Li, J. Xi, L. Li, J. Dai, Y. Yang, X. Gao, H. Dong, B. Jiao, I. Spanopoulos, C. D. Malliakas, X. Hou, M. G. Kanatzidis, Z. Wu, Joule 2019, 3, 3072–3087.
- 32M. M. Byranvand, T. Kodalle, W. Zuo, T. Magorian Friedlmeier, M. Abdelsamie, K. Hong, W. Zia, S. Perween, O. Clemens, C. M. Sutter-Fella, M. Saliba, Adv. Sci. 2022, 9, 2202441.
- 33Rebecca A. Belisle, Kevin A. Bush, Luca Bertoluzzi, Aryeh Gold-Parker, Michael F. Toney, Michael D. McGehee, ACS Energy Lett. 2018, 3, 2694–2700.
- 34
- 34aC. L. Price, R. Kaur Kohli, B. Shokoor, J. F. Davies, J. Phys. Chem. A 2022, 126, 6963–6972;
- 34bY. Qin, B. Lu, G. Rauhut, M. Hagedorn, K. Banert, C. Song, X. Chu, L. Wang, X. Zeng, Angew. Chem. Int. Ed. 2019, 58, 17277–17281.
- 35
- 35aT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 35bE. F. Byrd, B. M. Rice, J. Phys. Chem. A 2006, 110, 1005–1013.