Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices
Hao Chen
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunhao Cai
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yinghui Han
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408 China
Search for more papers by this authorCorresponding Author
Prof. Hui Huang
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHao Chen
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yunhao Cai
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yinghui Han
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408 China
Search for more papers by this authorCorresponding Author
Prof. Hui Huang
College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorGraphical Abstract
Creating an artificial visual sensory system demands cutting-edge optoelectronic materials and devices capable of emulating the intricate functions of biological synapses. In this concise review, we delve into the latest breakthroughs in organic materials, devices, and applications pertaining to the realm of artificial visual sensory systems. Our comprehensive summary of these developments serves as a vital source of insight, illuminating the path forward for future advancements in this dynamic field.
Abstract
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. K. Mai, G. Paxinos, The human nervous system, 3rd ed, Elsevier, Amsterdam, 2011.
- 2P. L. Gentili, J. Intell. Fuzzy Syst. 2014, 27, 2137–2151.
- 3F. Sun, Q. Lu, S. Feng, T. Zhang, ACS Nano 2021, 15, 3875–3899.
- 4G. Söhl, S. Maxeiner, K. Willecke, Nat. Rev. Neurosci. 2005, 6, 191–200.
- 5C.-S. Poon, K. Zhou, Front. Neurol. Neurosci. 2011, 5, 108.
- 6
- 6aF. Wu, C. Lu, M. Zhu, H. Chen, J. Zhu, K. Yu, L. Li, M. Li, Q. Chen, X. Li, X. Cao, Z. Wang, Z. Zha, Y. Zhuang, Y. Pan, Nat. Mach. Intell. 2020, 2, 312–316;
- 6bY. Pan, Engineering 2016, 2, 409–413;
- 6cY.-T. Zhuang, F. Wu, C. Chen, Y.-H. Pan, Front. Inf. Technol. Electron. Eng. 2017, 18, 3–14.
- 7S. Zhu, T. Yu, T. Xu, H. Chen, S. Dustdar, S. Gigan, D. Gunduz, E. Hossain, Y. Jin, F. Lin, B. Liu, Z. Wan, J. Zhang, Z. Zhao, W. Zhu, Z. Chen, T. S. Durrani, H. Wang, J. Wu, T. Zhang, Y. Pan, Intell. Comput. 2023, 2, 0006.
- 8
- 8aH. Bian, Y. Y. Goh, Y. Liu, H. Ling, L. Xie, X. Liu, Adv. Mater. 2021, 33, 2006469;
- 8bH. L. Park, Y. Lee, N. Kim, D. G. Seo, G. T. Go, T. W. Lee, Adv. Mater. 2020, 32, e1903558.
- 9
- 9aQ. Zhang, T. Jin, X. Ye, D. Geng, W. Chen, W. Hu, Adv. Funct. Mater. 2021, 31, 2106151;
- 9bY. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Joule 2021, 5, 794–810;
- 9cH. Chen, Y. Hou, Y. Shi, Y. Zhang, S. Wang, Q. Peng, H. Huang, J. Am. Chem. Soc. 2023, 145, 11988–11996;
- 9dG. T. Go, Y. Lee, D. G. Seo, T. W. Lee, Adv. Mater. 2022, 34, 2201864;
- 9eY. Lee, T. W. Lee, Acc. Chem. Res. 2019, 52, 964–974.
- 10Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665–671.
- 11
- 11aK. Lee, H. Han, Y. Kim, J. Park, S. Jang, H. Lee, S. W. Lee, H. Kim, Y. Kim, T. Kim, D. Kim, G. Wang, C. Park, Adv. Funct. Mater. 2021, 31, 2105596;
- 11bB. Mu, L. Guo, J. Liao, P. Xie, G. Ding, Z. Lv, Y. Zhou, S. T. Han, Y. Yan, Small 2021, 17, 2103837.
- 12Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S. T. Han, Adv. Mater. 2018, 30, e1802883.
- 13K. Nakayama, Y. Hirose, J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li, M. J. Kang, M. Yamagishi, Y. Okada, E. Miyazaki, Y. Nakazawa, A. Nakao, K. Takimiya, J. Takeya, Adv. Mater. 2011, 23, 1626–1629.
- 14Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005.
- 15X. Wang, Y. Lu, J. Zhang, S. Zhang, T. Chen, Q. Ou, J. Huang, Small 2021, 17, e2005491.
- 16D. Xue, Y. Zhang, W. Gong, Y. Yin, Z. Wang, L. Huang, L. Chi, Sci. China Chem. 2022, 65, 2567–2575.
- 17B. Yang, Y. Lu, D. Jiang, Z. Li, Y. Zeng, S. Zhang, Y. Ye, Z. Liu, Q. Ou, Y. Wang, S. Dai, Y. Yi, J. Huang, Adv. Mater. 2020, 32, e2001227.
- 18
- 18aY. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu, X. Wang, S. Shang, W. Gao, C. Du, J. Chen, Y. Liu, Angew. Chem. Int. Ed. Engl. 2021, 60, 17440–17445;
- 18bL. Jiang, C. Xu, X. Wu, X. Zhao, L. Zhang, G. Zhang, X. Wang, L. Qiu, ACS Appl. Mater. Interfaces 2022, 14, 11718–11726.
- 19X. Sha, Y. Cao, L. Meng, Z. Yao, Y. Gao, N. Zhou, Y. Zhang, P. K. Chu, J. Li, Appl. Phys. Lett. 2022, 120, 151103.
- 20C. Wang, X. Zhang, W. Hu, Chem. Soc. Rev. 2020, 49, 653–670.
- 21J. Zhang, Q. Shi, R. Wang, X. Zhang, L. Li, J. Zhang, L. Tian, L. Xiong, J. Huang, InfoMat 2021, 3, 904–916.
- 22H. L. Park, H. Kim, D. Lim, H. Zhou, Y. H. Kim, Y. Lee, S. Park, T. W. Lee, Adv. Mater. 2020, 32, e1906899.
- 23J. H. Kim, M. Stolte, F. Würthner, ACS Nano 2022, 16, 19523–19532.
- 24
- 24aS. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324–1338;
- 24bL. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Chem. Rev. 2015, 115, 12633–12665.
- 25R. A. J. Janssen, J. Nelson, Adv. Mater. 2013, 25, 1847–1858.
- 26S. Lan, J. Zhong, J. Chen, W. He, L. He, R. Yu, G. Chen, H. Chen, J. Mater. Chem. C 2021, 9, 3412–3420.
- 27
- 27aC. Choi, J. Leem, M. S. Kim, A. Taqieddin, C. Cho, K. W. Cho, G. J. Lee, H. Seung, H. J. Bae, Y. M. Song, T. Hyeon, N. R. Aluru, S. Nam, D. H. Kim, Nat. Commun. 2020, 11, 5934;
- 27bP. Xie, X. Chen, Z. Zeng, W. Wang, Y. Meng, Z. Lai, Q. Quan, D. Li, W. Wang, X. Bu, S. W. Tsang, S. Yip, J. Sun, J. C. Ho, Adv. Funct. Mater. 2023, 33, 2209091.
- 28
- 28aS. Zhao, Y. Wang, W. Huang, H. Jin, P. Huang, H. Wang, K. Wang, D. Li, M. Xu, D. Yang, X. Pi, Sci. China Mater. 2019, 62, 1470–1478;
- 28bL. Shan, Q. Chen, R. Yu, C. Gao, L. Liu, T. Guo, H. Chen, Nat. Commun. 2023, 14, 2648;
- 28cS. Zhao, Z. Ni, H. Tan, Y. Wang, H. Jin, T. Nie, M. Xu, X. Pi, D. Yang, Nano Energy 2018, 54, 383–389.
- 29H. Zeng, Q. Chen, L. Shan, Y. Yan, C. Gao, W. Lu, H. Chen, T. Guo, Sci. China Mater. 2022, 65, 2511–2520.
- 30C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, B. Kay, Nat. Comput. Sci. 2022, 2, 10–19.
- 31Y. Wei, Y. Liu, Q. Lin, T. Liu, S. Wang, H. Chen, C. Li, X. Gu, X. Zhang, H. Huang, Nano-Micro Lett. 2023, 15, 133.
- 32T. Liu, Q. Lin, Y. Ma, S. Wang, H. Chen, Y. Wei, Y. Song, L. Shen, F. Huang, H. Huang, Adv. Opt. Mater. 2022, 10, 2201104.
- 33S. Wang, H. Chen, T. Liu, Y. Wei, G. Yao, Q. Lin, X. Han, C. Zhang, H. Huang, Angew. Chem. Int. Ed. 2023, 62, e202213733.
- 34H. Shen, C.-A. Di, D. Zhu, Sci. China Chem. 2017, 60, 437–449.
- 35R. Jia, X. Wu, W. Deng, X. Zhang, L. Huang, K. Niu, L. Chi, J. Jie, Adv. Funct. Mater. 2019, 29, 1905657.
- 36F. Xu, C. Zhang, X. Zhao, H. Yu, G. Zhao, J. Li, B. Wang, Y. Tong, Q. Tang, Y. Liu, J. Mater. Chem. C 2022, 10, 10586–10594.
- 37H. Chen, L. Lv, Y. Wei, T. Liu, S. Wang, Q. Shi, H. Huang, Cell Rep. Phys. Sci. 2021, 2, 100507.
- 38
- 38aK. Puntambekar, J. Dong, G. Haugstad, C. D. Frisbie, Adv. Funct. Mater. 2006, 16, 879–884;
- 38bE. M. Muller, J. A. Marohn, Adv. Mater. 2005, 17, 1410–1414.
- 39K. Pei, X. Ren, Z. Zhou, Z. Zhang, X. Ji, P. K. L. Chan, Adv. Mater. 2018, 30, e1706647.
- 40
- 40aY. N. Zhong, X. Gao, J. L. Xu, H. Sirringhaus, S. D. Wang, Adv. Electron. Mater. 2020, 6, 1900955;
- 40bS. Dai, X. Wu, D. Liu, Y. Chu, K. Wang, B. Yang, J. Huang, ACS Appl. Mater. Interfaces 2018, 10, 21472–21480;
- 40cC. H. Chen, Y. Wang, T. Michinobu, S. W. Chang, Y. C. Chiu, C. Y. Ke, G. S. Liou, ACS Appl. Mater. Interfaces 2020, 12, 6144–6150.
- 41X. Wu, Y. Chu, R. Liu, H. E. Katz, J. Huang, Adv. Sci. 2017, 4, 1700442.
- 42Z. Lv, M. Chen, F. Qian, V. A. L. Roy, W. Ye, D. She, Y. Wang, Z. X. Xu, Y. Zhou, S. T. Han, Adv. Funct. Mater. 2019, 29, 1902374.
- 43H. R. Lee, D. Lee, J. H. Oh, Adv. Mater. 2021, 33, e2100119.
- 44H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu, Y. Yang, L. Wang, Y. Ran, Y. Guo, W. Hu, Y. Liu, Adv. Mater. 2018, 30, e1803961.
- 45K. Chen, H. Hu, I. Song, H. B. Gobeze, W.-J. Lee, A. Abtahi, K. S. Schanze, J. Mei, Nat. Photonics 2023, 17, 629–637.
- 46Y. Lee, J. Y. Oh, W. Xu, O. Kim, T. R. Kim, J. Kang, Y. Kim, D. Son, J. B. H. Tok, M. J. Park, Z. Bao, T.-W. Lee, Sci. Adv. 2018, 4, eaat7387.
- 47H. Wang, H. Liu, Q. Zhao, Z. Ni, Y. Zou, J. Yang, L. Wang, Y. Sun, Y. Guo, W. Hu, Y. Liu, Adv. Mater. 2017, 29, 1701772.
- 48
- 48aH. Seung, C. Choi, D. C. Kim, J. S. Kim, J. H. Kim, J. Kim, S. I. Park, J. A. Lim, J. Yang, M. K. Choi, T. Hyeon, D.-H. Kim, Sci. Adv. 2022, 8, eabq3101;
- 48bY. Zhu, C. Wu, Z. Xu, Y. Liu, H. Hu, T. Guo, T. W. Kim, Y. Chai, F. Li, Nano Lett. 2021, 21, 6087–6094.
- 49Y. Chen, H. Wang, F. Luo, V. Montes-García, Z. Liu, P. Samorì, Sci. Adv. 2022, 8, eabq4824.
- 50Y. Chen, H. Wang, Y. Yao, Y. Wang, C. Ma, P. Samori, Adv. Mater. 2021, 33, e2103369.
- 51J. Shi, J. Jie, W. Deng, G. Luo, X. Fang, Y. Xiao, Y. Zhang, X. Zhang, X. Zhang, Adv. Mater. 2022, 34, e2200380.
- 52M. Kumar, H. S. Kim, J. Kim, Adv. Mater. 2019, 31, e1900021.
- 53J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu, H. Huang, W. Xu, Matter 2022, 5, 1578–1589.
- 54C. Chen, Y. He, H. Mao, L. Zhu, X. Wang, Y. Zhu, Y. Zhu, Y. Shi, C. Wan, Q. Wan, Adv. Mater. 2022, 34, e2201895.
- 55Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv, J. Wang, J. Q. Yang, G. Zhang, Y. Zhou, S. T. Han, Nat. Commun. 2021, 12, 5979.