Essay
Catalysis for Total Synthesis: A Personal Account
Prof. Alois Fürstner,
Corresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorProf. Alois Fürstner,
Corresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany)Search for more papers by this authorGraphical Abstract
Divining rod: Natural product synthesis often serves as a divining rod in our search for new and useful catalytic reactivity. This personal account—written in honor of the Max-Planck-Institut für Kohlenforschung on the occasion of its 100th anniversary—summarizes the major lines of research pursued in the author's laboratory, which show how total synthesis and research into basic organometallic chemistry cross-fertilize each other.
References
- 1“Die Aufgaben des Kaiser-Wilhelm-Instituts für Kohlenforschung zu Mülheim (Ruhr)”: E. Fischer in Untersuchungen aus Verschiedenen Gebieten (Ed.: ), Springer, Berlin, 1924, pp. 810–822.
10.1007/978-3-642-51364-0_111 Google Scholar
- 2F. Fischer, H. Tropsch, Ber. Dtsch. Chem. Ges. 1926, 59, 830–831.
- 3The only exception is the brief mention of food processing by the hydrogenation of train oil.
- 4The different syntheses of indigo nicely illustrate this notion, see: B. Schäfer, Naturstoffe der chemischen Industrie, Spektrum, Heidelberg, 2006.
- 5For general discussions of natural product synthesis, in particular of the early phase, see the following and literature cited therein:
- 5aR. W. Hoffmann, Angew. Chem. 2013, 125, 133–140;
10.1002/ange.201203319 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 123–130;
- 5bI. Fleming, Selected Organic Syntheses: A Guidebook for Organic Chemists, Wiley, New York, 1973;
- 5cK. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis: Targets, Strategies, Methods, Wiley-VCH, Weinheim, 1996.
- 6The total synthesis of vitamin C is such a remarkable exception; developed as early as 1933 in an academic laboratory, the route was catalysis based and quickly adapted to an industrial scale, see:
- 6aT. Reichstein, A. Grüssner, R. Oppenauer, Helv. Chim. Acta 1933, 16, 561–565;
- 6bfor a review see: M. Eggersdorfer, D. Laudert, U. Létinois, T. McClymont, J. Medlock, T. Netscher, W. Bonrath, Angew. Chem. 2012, 124, 13134–13165;
10.1002/ange.201205886 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12960–12990.
- 7
- 7aN. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. 2009, 121, 2896–2910;
10.1002/ange.200806086 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 2854–2867;
- 7bP. A. Wender, B. L. Miller, Nature 2009, 460, 197–201;
- 7cT. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657–4673;
- 7dA. Fürstner, Synlett 1999, 1523–1533.
- 8A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1997, 119, 2944–2945.
- 9A. Fürstner, T. Gastner, H. Weintritt, J. Org. Chem. 1999, 64, 2361–2366.
- 10A. Fürstner, Angew. Chem. 2003, 115, 3706–3728;
10.1002/ange.200300582 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3582–3603.
- 11A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 8746–8749.
- 12A. Fürstner, T. Müller, Synlett 1997, 1010–1012.
- 13N. Chatani, N. Furukawa, H. Sakurai, S. Murai, Organometallics 1996, 15, 901–903.
- 14A. Fürstner, H. Szillat, B. Gabor, R. Mynott, J. Am. Chem. Soc. 1998, 120, 8305–8314.
- 15A. Fürstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 2001, 123, 11863–11869.
- 16A recent NMR study confirms this interpretation, see: R. E. M. Brooner, T. J. Brown, R. A. Widenhoefer, Angew. Chem. 2013, 125, 6379–6381;
10.1002/ange.201301640 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 6259–6261.
- 17A. Fürstner, P. W. Davies, Angew. Chem. 2007, 119, 3478–3519;
10.1002/ange.200604335 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 3410–3449.
- 18D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403.
- 19E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350.
- 20A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211.
- 21Y. Yamamoto, J. Org. Chem. 2007, 72, 7817–7831.
- 22A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208–3221.
- 23
- 23aA. Fürstner, L. Morency, Angew. Chem. 2008, 120, 5108–5111;
10.1002/ange.200800934 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 5030–5033;
- 23bfor the Stork–Eschenmoser paradigm discussed therein, see: G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068–5077; G. Gamboni, H. Schinz, A. Eschenmoser, Helv. Chim. Acta 1954, 37, 964–971; A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, Helv. Chim. Acta 1955, 38, 1890–1904.
- 24For reviews, see:
- 24aA. S. K. Hashmi, Angew. Chem. 2010, 122, 5360–5369;
10.1002/ange.200907078 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 5232–5241;
- 24bL.-P. Liu, G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129–3139;
- 24cH. G. Raubenheimer, H. Schmidbaur, S. Afr. J. Sci. 2011, 107, 31–43;
- 24dH. Schmidbaur, A. Schier, Organometallics 2010, 29, 2–23.
- 25S. Flügge, A. Anoop, R. Goddard, W. Thiel, A. Fürstner, Chem. Eur. J. 2009, 15, 8558–8565.
- 26M. J. S. Dewar, Bull. Soc. Chim. Fr. 1951, 18, C 71–C79.
- 27J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939–2947.
- 28A. Fürstner, M. Alcarazo, K. Radkowski, C. W. Lehmann, Angew. Chem. 2008, 120, 8426–8430;
10.1002/ange.200803200 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 8302–8306.
- 29G. Seidel, C. W. Lehmann, A. Fürstner, Angew. Chem. 2010, 122, 8644–8648;
10.1002/ange.201003349 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 8466–8470.
- 30gem-Diauration had been inferred before based on MS and NMR data, see: D. Weber, M. A. Tarselli, M. R. Gagné, Angew. Chem. 2009, 121, 5843–5846; Angew. Chem. Int. Ed. 2009, 48, 5733–5736.
- 31A. Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918–1930.
- 32G. Seidel, R. Mynott, A. Fürstner, Angew. Chem. 2009, 121, 2548–2551;
10.1002/ange.200806059 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 2510–2513.
- 33For the development of the cyclopropene rearrangement, see: P. Binger, P. Müller, R. Benn, R. Mynott, Angew. Chem. 1989, 101, 647–648; Angew. Chem. Int. Ed. Engl. 1989, 28, 610–611.
- 34For a pertinent discussion and a generalized bonding model, see: D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard, F. D. Toste, Nat. Chem. 2009, 1, 482–486.
- 35G. Seidel, B. Gabor, R. Goddard, B. Heggen, W. Thiel, A. Fürstner, Angew. Chem. 2014, 126, 898–901;
10.1002/ange.201308842 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 879–882.
- 36R. Aumann, E. O. Fischer, Chem. Ber. 1981, 114, 1853–1857.
- 37G. Seidel, A. Fürstner, Angew. Chem. 2014, 126, 4907–4911;
10.1002/ange.201402080 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 4807–4811.
- 38For an instructive case of modulation of gold-to-ligand electron back-donation by variation of the ancillary ligand, see: M. Alcarazo, T. Stork, A. Anoop, W. Thiel, A. Fürstner, Angew. Chem. 2010, 122, 2596–2600; Angew. Chem. Int. Ed. 2010, 49, 2542–2546.
- 39A. Fürstner, Acc. Chem. Res. 2014, 47, 925–938.
- 40W. Chaładaj, M. Corbet, A. Fürstner, Angew. Chem. 2012, 124, 7035–7039;
10.1002/ange.201203180 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 6929–6933.
- 41S. Benson, M.-P. Collin, A. Arlt, B. Gabor, R. Goddard, A. Fürstner, Angew. Chem. 2011, 123, 8898–8903;
10.1002/ange.201103270 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8739–8744.
- 42G. Valot, C. S. Regens, D. P. O’Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. 2013, 125, 9713–9717;
10.1002/ange.201301700 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 9534–9538.
- 43L. Brewitz, J. Llaveria, A. Yada, A. Fürstner, Chem. Eur. J. 2013, 19, 4532–4537.
- 44A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006–3019.
- 45For a closely related approach to the same target, see: C. Fehr, J. Galindo, Angew. Chem. 2006, 118, 2967–2970;
10.1002/ange.200504543 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 2901–2904.
- 46V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654–8655.
- 47A. Fürstner, A. Schlecker, Chem. Eur. J. 2008, 14, 9181–9191.
- 48Reviews:
- 48aA. Pradal, P. Y. Toullec, V. Michelet, Synthesis 2011, 1501–1514;
- 48bN. D. Shapiro, F. D. Toste, Synlett 2010, 675–691.
- 49H. Teller, S. Flügge, R. Goddard, A. Fürstner, Angew. Chem. 2010, 122, 1993–1997;
10.1002/ange.200906550 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1949–1953.
- 50H. Teller, M. Corbet, L. Mantilli, G. Gopakumar, R. Goddard, W. Thiel, A. Fürstner, J. Am. Chem. Soc. 2012, 134, 15331–15342.
- 51H. Teller, A. Fürstner, Chem. Eur. J. 2011, 17, 7764–7767.
- 52 Iron Catalysis in Organic Chemistry: Reactions and Applications (Ed.: ), Wiley-VCH, Weinheim, 2008.
- 53C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217–6254.
- 54E. Nakamura, N. Yoshikai, J. Org. Chem. 2010, 75, 6061–6067.
- 55T. Hatakeyama, K. Ishizuka, M. Nakamura, J. Synth. Org. Chem. Jpn. 2011, 69, 1282–1298.
- 56W. M. Czaplik, M. Mayer, J. Cvengroš, A. J. von Wangelin, ChemSusChem 2009, 2, 396–417.
- 57B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41, 1500–1511.
- 58
- 58aM. Tamura, J. Kochi, J. Am. Chem. Soc. 1971, 93, 1487–1489;
- 58bfor an improved procedure, see: G. Cahiez, H. Avedissian, Synthesis 1998, 1199–1205.
- 59A. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856–13863.
- 60See the following for leading references and literature cited therein:
- 60aT. Hatakeyama, S. Hashimoto, K. Ishizuka, M. Nakamura, J. Am. Chem. Soc. 2009, 131, 11949–11963;
- 60bO. M. Kuzmina, A. K. Steib, J. T. Markiewicz, D. Flubacher, P. Knochel, Angew. Chem. 2013, 125, 5045–5049;
10.1002/ange.201210235 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 4945–4949;
- 60cO. M. Kuzmina, A. K. Steib, D. Flubacher, P. Knochel, Org. Lett. 2012, 14, 4818–4821.
- 61M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686–3687.
- 62T. Nagano, T. Hayashi, Org. Lett. 2004, 6, 1297–1299.
- 63R. Martin, A. Fürstner, Angew. Chem. 2004, 116, 4045–4047; Angew. Chem. Int. Ed. 2004, 43, 3955–3957.
- 64C.-L. Sun, A. Fürstner, Angew. Chem. 2013, 125, 13309–13313; Angew. Chem. Int. Ed. 2013, 52, 13071–13075.
- 65A. Fürstner, M. Méndez, Angew. Chem. 2003, 115, 5513–5515;
10.1002/ange.200352441 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5355–5357.
- 66A. Fürstner, E. Kattnig, O. Lepage, J. Am. Chem. Soc. 2006, 128, 9194–9204.
- 67A. Fürstner, E. Kattnig, G. Kelter, H.-H. Fiebig, Chem. Eur. J. 2009, 15, 4030–4043.
- 68A. Fürstner, Isr. J. Chem. 2011, 51, 329–345.
- 69B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943–3949.
- 70A. Fürstner, H. Krause, C. W. Lehmann, Angew. Chem. 2006, 118, 454–458;
10.1002/ange.200502859 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 440–444.
- 71See the following and literature cited therein:
- 71aA. Hedström, U. Bollmann, J. Bravidor, P.-O. Norrby, Chem. Eur. J. 2011, 17, 11991–11993;
- 71bC. J. Adams, R. B. Bedford, E. Carter, N. J. Gower, M. F. Haddow, J. N. Harvey, M. Huwe, M. Á. Cartes, S. M. Mansell, C. Mendoza, D. M. Murphy, E. C. Neeve, J. Nunn, J. Am. Chem. Soc. 2012, 134, 10333–10336;
- 71cR. B. Bedford, E. Carter, P. M. Cogswell, N. J. Gower, M. F. Haddow, J. N. Harvey, D. M. Murphy, E. C. Neeve, J. Nunn, Angew. Chem. 2013, 125, 1323–1326;
10.1002/ange.201207868 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 1285–1288.
- 72A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773–8787.
- 73
- 73aK. Jonas, L. Schieferstein, Angew. Chem. 1979, 91, 590;
10.1002/ange.19790910732 Google ScholarAngew. Chem. Int. Ed. Engl. 1979, 18, 549–550;
- 73bK. Jonas, L. Schieferstein, C. Krüger, Y.-H. Tsay, Angew. Chem. 1979, 91, 590–591;
10.1002/ange.19790910732 Google ScholarAngew. Chem. Int. Ed. Engl. 1979, 18, 550–551;
- 73cK. Jonas, P. Klusmann, R. Goddard, Z. Naturforsch. B 1995, 50, 394–404.
- 74B. D. Sherry, A. Fürstner, Chem. Commun. 2009, 7116–7118.
- 75A. Fürstner, K. Majima, R. Martín, H. Krause, E. Kattnig, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 1992–2004.
- 76R. H. Grubbs, Angew. Chem. 2006, 118, 3845–3850;
10.1002/ange.200600680 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3760–3765.
- 77R. R. Schrock, Angew. Chem. 2006, 118, 3832–3844;
10.1002/ange.200600085 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3748–3759.
- 78T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29.
- 79A. Fürstner, Angew. Chem. 2000, 112, 3140–3172;
10.1002/1521-3757(20000901)112:17<3140::AID-ANGE3140>3.0.CO;2-G Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3012–3043.10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 80S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944–1968;
10.1002/ange.200200556 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1900–1923.
- 81K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4564–4601;
10.1002/ange.200500369 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 4490–4527.
- 82A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243–251.
- 83A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 3942–3943.
- 84A. Fürstner, N. Kindler, Tetrahedron Lett. 1996, 37, 7005–7008.
- 85A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130–9136.
- 86A. Fürstner, Chem. Commun. 2011, 47, 6505–6511.
- 87A. Fürstner, T. Müller, J. Am. Chem. Soc. 1999, 121, 7814–7821.
- 88A. Fürstner, F. Jeanjean, P. Razon, Angew. Chem. 2002, 114, 2203–2206;
10.1002/1521-3757(20020617)114:12<2203::AID-ANGE2203>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2097–2101.10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 89A. Fürstner, T. Nagano, J. Am. Chem. Soc. 2007, 129, 1906–1907.
- 90A. Kondoh, A. Arlt, B. Gabor, A. Fürstner, Chem. Eur. J. 2013, 19, 7731–7738.
- 91A. Fürstner, Eur. J. Org. Chem. 2004, 943–958.
- 92A. Fürstner, C. Nevado, M. Waser, M. Tremblay, C. Chevrier, F. Teplý, C. Aïssa, E. Moulin, O. Müller, J. Am. Chem. Soc. 2007, 129, 9150–9161.
- 93J. Gagnepain, E. Moulin, A. Fürstner, Chem. Eur. J. 2011, 17, 6964–6972.
- 94A. Fürstner, M. Liebl, C. W. Lehmann, M. Picquet, R. Kunz, C. Bruneau, D. Touchard, P. H. Dixneuf, Chem. Eur. J. 2000, 6, 1847–1857.
10.1002/(SICI)1521-3765(20000515)6:10<1847::AID-CHEM1847>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 95L. Ackermann, A. Fürstner, T. Weskamp, F. J. Kohl, W. A. Herrmann, Tetrahedron Lett. 1999, 40, 4787–4790.
- 96A. Fürstner, O. R. Thiel, L. Ackermann, H.-J. Schanz, S. P. Nolan, J. Org. Chem. 2000, 65, 2204–2207.
- 97J. Heppekausen, A. Fürstner, Angew. Chem. 2011, 123, 7975–7978;
10.1002/ange.201102012 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7829–7832.
- 98A. Fürstner, D. Koch, K. Langemann, W. Leitner, C. Six, Angew. Chem. 1997, 109, 2562–2565;
10.1002/ange.19971092211 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 2466–2469.
- 99A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Chem. Eur. J. 2001, 7, 4811–4820.
10.1002/1521-3765(20011119)7:22<4811::AID-CHEM4811>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 100For recent progress toward Z-selective alkene metathesis catalysts, see the following for leading references:
- 100aS. J. Meek, R. V. O’Brien, J. Llaveria, R. R. Schrock, A. H. Hoveyda, Nature 2011, 471, 461–466;
- 100bC. Wang, M. Yu, A. F. Kyle, P. Jakubec, D. J. Dixon, R. R. Schrock, A. H. Hoveyda, Chem. Eur. J. 2013, 19, 2726–2740;
- 100cL. E. Rosebrugh, M. B. Herbert, V. M. Marx, B. K. Keitz, R. H. Grubbs, J. Am. Chem. Soc. 2013, 135, 1276–1279;
- 100dR. K. M. Khan, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2013, 135, 10258–10261.
- 101A. Fürstner, Science 2013, 341, 1357 (UNSP 1229713).
- 102A. Fürstner, G. Seidel, Angew. Chem. 1998, 110, 1758–1760;
10.1002/(SICI)1521-3757(19980619)110:12<1758::AID-ANGE1758>3.0.CO;2-I Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1734–1736.10.1002/(SICI)1521-3773(19980703)37:12<1734::AID-ANIE1734>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 103A. Fürstner, Angew. Chem. 2013, 125, 2860–2887;
10.1002/ange.201204513 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 2794–2819.
- 104A. Mortreux, M. Blanchard, J. Chem. Soc. Chem. Commun. 1974, 786–787.
- 105R. R. Schrock, D. N. Clark, J. Sancho, J. H. Wengrovius, S. M. Rocklage, S. F. Pedersen, Organometallics 1982, 1, 1645–1651.
- 106R. R. Schrock, Chem. Rev. 2002, 102, 145–179.
- 107A. Fürstner, O. Guth, A. Rumbo, G. Seidel, J. Am. Chem. Soc. 1999, 121, 11108–11113.
- 108A. Fürstner, P. W. Davies, Chem. Commun. 2005, 2307–2320.
- 109L. G. McCullough, R. R. Schrock, J. C. Dewan, J. C. Murdzek, J. Am. Chem. Soc. 1985, 107, 5987–5998.
- 110A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 1999, 121, 9453–9454.
- 111A. Fürstner, C. Mathes, C. W. Lehmann, Chem. Eur. J. 2001, 7, 5299–5317.
10.1002/1521-3765(20011217)7:24<5299::AID-CHEM5299>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 112J. Willwacher, N. Kausch-Busies, A. Fürstner, Angew. Chem. 2012, 124, 12207–12212;
10.1002/ange.201206670 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12041–12046.
- 113C. C. Cummins, Chem. Commun. 1998, 1777–1786.
- 114J. Heppekausen, R. Stade, R. Goddard, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11045–11057.
- 115J. Heppekausen, R. Stade, A. Kondoh, G. Seidel, R. Goddard, A. Fürstner, Chem. Eur. J. 2012, 18, 10281–10299.
- 116P. Persich, J. Llaveria, R. Lhermet, T. de Haro, R. Stade, A. Kondoh, A. Fürstner, Chem. Eur. J. 2013, 19, 13047–13058.
- 117For the first use of terminal alkynes using a molybdenum alkylidyne with fluorinated alkoxide ligands, see: B. Haberlag, M. Freytag, C. G. Daniliuc, P. G. Jones, M. Tamm, Angew. Chem. 2012, 124, 13195–13199;
10.1002/ange.201207772 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 13019–13022.
- 118K. Gebauer, A. Fürstner, Angew. Chem. 2014, 126, 6511–6514;
10.1002/ange.201402550 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 6393–6396.
- 119J. Willwacher, A. Fürstner, Angew. Chem. 2014, 126, 4301–4305;
10.1002/ange.201400605 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 4217–4221.
- 120V. Hickmann, A. Kondoh, B. Gabor, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2011, 133, 13471–13480.
- 121K. Lehr, R. Mariz, L. Leseurre, B. Gabor, A. Fürstner, Angew. Chem. 2011, 123, 11575–11579;
10.1002/ange.201106117 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 11373–11377.
- 122K. Micoine, P. Persich, J. Llaveria, M.-H. Lam, A. Maderna, F. Loganzo, A. Fürstner, Chem. Eur. J. 2013, 19, 7370–7383.
- 123L. Hoffmeister, P. Persich, A. Fürstner, Chem. Eur. J. 2014, 20, 4396–4402.
- 124D. J. Pasto in Comprehensive Organic Synthesis, Vol. 8 (Eds.: ), Pergamon Press, Oxford, 1991, pp. 471–488.
10.1016/B978-0-08-052349-1.00236-5 Google Scholar
- 125B. M. Trost, Z. T. Ball, T. Jöge, J. Am. Chem. Soc. 2002, 124, 7922–7923;
- 125bB. M. Trost, Z. T. Ball, J. Am. Chem. Soc. 2005, 127, 17644–17655.
- 126B. M. Trost, Z. T. Ball, Synthesis 2005, 853–887.
- 127A. Fürstner, K. Radkowski, Chem. Commun. 2002, 2182–2183.
- 128F. Lacombe, K. Radkowski, G. Seidel, A. Fürstner, Tetrahedron 2004, 60, 7315–7324.
- 129R. Hoffmann, Angew. Chem. 1982, 94, 725–739;
10.1002/ange.19820941002 Google ScholarAngew. Chem. Int. Ed. Engl. 1982, 21, 711–724.
- 130K. Radkowski, B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 373–378;
10.1002/ange.201205946 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 355–360.
- 131L. W. Chung, Y.-D. Wu, B. M. Trost, Z. T. Ball, J. Am. Chem. Soc. 2003, 125, 11578–11582.
- 132B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 14300–14304;
10.1002/ange.201307584 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 14050–14054.
- 133S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 126, 3700–3704;
10.1002/ange.201311080 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 3626–3630.
- 134For trans-hydrogermylation, see: T. Matsuda, S. Kadowaki, Y. Yamaguchi, M. Murakami, Org. Lett. 2010, 12, 1056–1058.
- 135N. Asao, J.-X. Liu, T. Sudoh, Y. Yamamoto, J. Org. Chem. 1996, 61, 4568–4571.
- 136A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118, 12349–12357.
- 137A. Fürstner, A. Hupperts, J. Am. Chem. Soc. 1995, 117, 4468–4475.
- 138A. Fürstner, G. Seidel, Tetrahedron 1995, 51, 11165–11176.
- 139This method was independently described by: J. A. Soderquist, K. Matos, A. Rane, J. Ramos, Tetrahedron Lett. 1995, 36, 2401–2402.
- 140G. Seidel, A. Fürstner, Chem. Commun. 2012, 48, 2055–2070.
- 141A. Fürstner, Angew. Chem. 2014, 126, 8–9;
10.1002/ange.201309315 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 8–9.