Horizontal Transport in Ti3C2Tx MXene for Highly Efficient Osmotic Energy Conversion from Saline-Alkali Environments
Han Qian
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorPuguang Peng
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorHongzhao Fan
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
Search for more papers by this authorZhe Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorLixue Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorProf. Yanguang Zhou
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
Search for more papers by this authorProf. Dan Tan
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126 People's Republic of China
Search for more papers by this authorFeiyao Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorProf. Morten Willatzen
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Gehan Amaratunga
Zhejiang University—University of Illinois at Urbana Champagne Institute (ZJUI) and School of Information Science and Electronics, Zhejiang University International Campus, Haining, China
Electrical Engineering Division, Dept. of Engineering, University of Cambridge, Cambridge, CB3 0FA UK
Search for more papers by this authorCorresponding Author
Prof. Zhonglin Wang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Di Wei
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA UK
Search for more papers by this authorHan Qian
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorPuguang Peng
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorHongzhao Fan
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
Search for more papers by this authorZhe Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorLixue Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorProf. Yanguang Zhou
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
Search for more papers by this authorProf. Dan Tan
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126 People's Republic of China
Search for more papers by this authorFeiyao Yang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorProf. Morten Willatzen
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Gehan Amaratunga
Zhejiang University—University of Illinois at Urbana Champagne Institute (ZJUI) and School of Information Science and Electronics, Zhejiang University International Campus, Haining, China
Electrical Engineering Division, Dept. of Engineering, University of Cambridge, Cambridge, CB3 0FA UK
Search for more papers by this authorCorresponding Author
Prof. Zhonglin Wang
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Search for more papers by this authorCorresponding Author
Prof. Di Wei
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 People's Republic of China
Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA UK
Search for more papers by this authorAbstract
Osmotic energy from the ocean has been thoroughly studied, but that from saline-alkali lakes is constrained by the ion-exchange membranes due to the trade-off between permeability and selectivity, stemming from the unfavorable structure of nanoconfined channels, pH tolerance, and chemical stability of the membranes. Inspired by the rapid water transport in xylem conduit structures, we propose a horizontal transport MXene (H-MXene) with ionic sequential transport nanochannels, designed to endure extreme saline-alkali conditions while enhancing ion selectivity and permeability. The H-MXene demonstrates superior ion conductivity of 20.67 S m−1 in 1 M NaCl solution and a diffusion current density of 308 A m−2 at a 10-fold salinity gradient of NaCl solution, significantly outperforming the conventional vertical transport MXene (V-MXene). Both experimental and simulation studies have confirmed that H-MXene represents a novel approach to circumventing the permeability-selectivity trade-off. Moreover, it exhibits efficient ion transport capabilities, addressing the gap in saline-alkali osmotic power generation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202414984-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Pacala, R. Socolow, Science 2004, 305, 968–972;
- 1bS. Chu, A. Majumdar, Nature 2012, 488, 294–303;
- 1cX. Tian, Y. Zhang, R. Zheng, D. Wei, J. Liu, Sustain. Energy Fuels 2020, 4, 2087–2113;
- 1dH. E. Unalan, Y. Yang, Y. Zhang, P. Hiralal, D. Kuo, S. Dalal, T. Butler, S. N. Cha, J. E. Jang, K. Chremmou, G. Lentaris, D. Wei, R. Rosentsveig, K. Suzuki, H. Matsumoto, M. Minagawa, Y. Hayashi, M. Chhowalla, A. Tanioka, W. I. Milne, R. Tenne, G. A. J. Amaratunga, IEEE Trans. Electron Devices 2008, 55, 2988–3000.
- 2
- 2aK. Xiao, L. Jiang, M. Antonietti, Joule 2019, 3, 2364–2380;
- 2bL. Yang, F. Yang, X. Liu, K. Li, Y. Zhou, Y. Wang, T. Yu, M. Zhong, X. Xu, L. Zhang, W. Shen, D. Wei, PNAS 2021, 118, e2023164118.
- 3B. E. Logan, M. Elimelech, Nature 2012, 488, 313–319.
- 4
- 4aX.-Y. Kong, L. Wen, L. Jiang, Trends Chem. 2020, 2, 180–182;
- 4bR. E. Pattle, Nature 1954, 174, 660–660;
- 4cP. Peng, F. Yang, Z. Wang, D. Wei, Adv. Energy Mater. 2023, 13, 2302360.
- 5
- 5aA. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet, Nature 2013, 494, 455–458;
- 5bJ. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic, Nature 2016, 536, 197–200.
- 6
- 6aZ. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622–639;
- 6bL. Wang, Z. X. Wang, S. K. Patel, S. H. Lin, M. Elimelech, ACS Nano 2021, 15, 4093–4107;
- 6cJ. Yang, B. Tu, M. Fang, L. Li, Z. Tang, ACS Nano 2022, 16, 13294–13300;
- 6dJ. Su, D. Ji, J. Tang, H. Li, Y. Feng, L. Cao, L. Jiang, W. Guo, Chin. J. Chem. 2018, 36, 417–420;
- 6eL. Cao, Q. Wen, Y. Feng, D. Ji, H. Li, N. Li, L. Jiang, W. Guo, Adv. Funct. Mater. 2018, 28, 1804189.
- 7
- 7aD. Wei, F. Yang, Z. Jiang, Z. Wang, Nat. Commun. 2022, 13, 4965;
- 7bY. Ouyang, X. Li, S. Li, P. Peng, F. Yang, Z. L. Wang, D. Wei, Nano Energy 2023, 116, 108796;
- 7cF. Yang, P. Peng, Z.-Y. Yan, H. Fan, X. Li, S. Li, H. Liu, T.-L. Ren, Y. Zhou, Z. L. Wang, D. Wei, Nat. Energy 2024, 9, 263–271;
- 7dD. Wei, Sci. Rep. 2015, 5, 15173.
- 8
- 8aK. Xiao, P. Giusto, L. Wen, L. Jiang, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 10123–10126;
- 8bK. Xiao, P. Giusto, L. P. Wen, L. Jiang, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 10123–10126.
- 9
- 9aS. Hong, J. K. El-Demellawi, Y. Lei, Z. Liu, F. A. Marzooqi, H. A. Arafat, H. N. Alshareef, ACS Nano 2022, 16, 792–800;
- 9bL. Ding, D. Xiao, Z. Lu, J. Deng, Y. Wei, J. Caro, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 8720–8726;
- 9cZ. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, X. Feng, Nat. Commun. 2019, 10, 2920;
- 9dR. Qu, X. Zeng, L. Lin, G. Zhang, F. Liu, C. Wang, S. Ma, C. Liu, H. Miao, L. Cao, ACS Nano 2020, 14, 16654–16662.
- 10H. Qian, D. Wei, Z. L. Wang, Nano Res. 2023, 16, 11718–11730.
- 11
- 11aH. Zhan, Z. Xiong, C. Cheng, Q. Liang, J. Z. Liu, D. Li, Adv. Mater. 2020, 32, 1904562;
- 11bX. Liang, J. Tang, Y. Zhong, B. Gao, H. Qian, H. Wu, Nat. Electron. 2024, 7, 193–206;
- 11cP. Peng, H. Qian, J. Liu, Z. Wang, D. Wei, Int. J. Smart Nano Mater. 2024, 15, 198–221;
- 11dL. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo, L. Jiang, Adv. Funct. Mater. 2017, 27, 1604302.
- 12
- 12aH. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530;
- 12bF. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, Mater. Chem. Front. 2018, 2, 935–941.
- 13L. Bocquet, Nat. Mater. 2020, 19, 254–256.
- 14A. Butturini, P. Herzsprung, O. J. Lechtenfeld, S. Venturi, S. Amalfitano, E. Vazquez, N. Pacini, D. M. Harper, F. Tassi, S. Fazi, Water Res. 2020, 173, 115532.
- 15
- 15aZ. Zhou, J. Yang, H. Lv, T. Zhou, J. Zhao, H. Bai, F. Pu, P. Xu, Genome Biol. Evol. 2023, 15;
- 15bF. Sui, S. Zang, Y. Fan, H. Ye, PLoS One 2016, 11, e0164734.
- 16Y. Zhou, L. Jiang, Joule 2020, 4, 2244–2248.
- 17
- 17aW. H. Schlesinger, S. Jasechko, Agric. For. Meteorol. 2014, 189–190, 115–117;
- 17bA. J. McElrone, B. Choat, G. A. Gambetta, C. R. Brodersen, Nature Education Knowledge 2013, 4, 6;
- 17cT. Xu, Z. Li, S. Bao, Y. Su, Z. Su, S. Zhi, E. Zheng, PLoS One 2023, 18, e0281080.
- 18
- 18aA. A. Myburg, R. R. Sederoff, Encyclopedia of Life Sciences. 2013, DOI: 10.1038/npg.els.0001302;
- 18bF. Wang, Z. Wang, X. Meng, X. Wang, Y. Fan, Y. Jin, W. Zhang, N. Yang, J. Membr. Sci. 2023, 686, 121975.
- 19A. R. Koltonow, J. Huang, Science 2016, 351, 1395–1396.
- 20Z. Zhang, W. Shen, L. Lin, M. Wang, N. Li, Z. Zheng, F. Liu, L. Cao, Adv. Sci. 2020, 7, 2000286.
- 21
- 21aS. Hong, F. Ming, Y. Shi, R. Li, I. S. Kim, C. Y. Tang, H. N. Alshareef, P. Wang, ACS Nano 2019, 13, 8917–8925;
- 21bG. Song, Y. Zhan, Y. Hu, J. Rao, N. Li, Z. Wu, Z. Su, B. Lü, R. Liu, B. Jiang, G. Chen, F. Peng, Adv. Funct. Mater. 2023, 33, 2214044.
- 22
- 22aJ. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng, K. Guan, M. Zhang, G. Liu, J. Xiong, J. Yang, W. Jin, Adv. Funct. Mater. 2018, 28, 1801511;
- 22bL. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun. 2018, 9, 155.
- 23
- 23aJ. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 2017, 27, 1701264;
- 23bG. R. Berdiyorov, AIP Adv. 2016, 6;
- 23cX. Xie, K. Kretschmer, B. Anasori, B. Sun, G. Wang, Y. Gogotsi, ACS Appl. Nano Mater. 2018, 1, 505–511.
- 24S. Kim, S. Choi, H. G. Lee, D. Jin, G. Kim, T. Kim, J. S. Lee, W. Shim, Nat. Commun. 2021, 12, 47.
- 25W. Guo, L. Cao, J. Xia, F.-Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Adv. Funct. Mater. 2010, 20, 1339–1344.
- 26D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, Microfluid. Nanofluid. 2010, 9, 1215–1224.
- 27
- 27aW. Guo, C. Cheng, Y. Wu, Y. Jiang, J. Gao, D. Li, L. Jiang, Adv. Mater. 2013, 25, 6064–6068;
- 27bJ. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, L. Jiang, Adv. Funct. Mater. 2017, 27, 1603623.
- 28L. Chang, T. Zhang, F. Wang, H. Ma, W. Xie, T. Ding, X. Xiao, 2D Mater. 2023, 10, 014009.
- 29V. Natu, M. Sokol, L. Verger, M. W. Barsoum, J. Phys. Chem. C 2018, 122, 27745–27753.
- 30S. Wang, Z. Wang, Y. Fan, X. Meng, F. Wang, N. Yang, J. Membr. Sci. 2023, 668, 121203.
- 31
- 31aE. R. Nightingale Jr., J. Phys. Chem. 1959, 63, 1381–1387;
- 31bQ. Wen, D. Yan, F. Liu, M. Wang, Y. Ling, P. Wang, P. Kluth, D. Schauries, C. Trautmann, P. Apel, W. Guo, G. Xiao, J. Liu, J. Xue, Y. Wang, Adv. Funct. Mater. 2016, 26, 5796–5803.
- 32Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li, H. Wang, ACS Nano 2019, 13, 10535–10544.
- 33R. B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 2008, 80, 839–883.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.