Na2Ba[Na2Sn2S7]: Structural Tolerance Factor-Guided NLO Performance Improvement
Dr. Rui-An Li
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorQian-Qian Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorXin Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorDr. Youquan Liu
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Xingxing Jiang
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Zheshuai Lin
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorDr. Fei Jia
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorDr. Lin Xiong
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ling Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Center for Advanced Materials Research, Beijing Normal University, 519087 Zhuhai, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Li-Ming Wu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Center for Advanced Materials Research, Beijing Normal University, 519087 Zhuhai, P. R. China
Search for more papers by this authorDr. Rui-An Li
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorQian-Qian Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorXin Liu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorDr. Youquan Liu
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Xingxing Jiang
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Zheshuai Lin
Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
Search for more papers by this authorDr. Fei Jia
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorDr. Lin Xiong
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ling Chen
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Center for Advanced Materials Research, Beijing Normal University, 519087 Zhuhai, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Li-Ming Wu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875 Beijing, P. R. China
Center for Advanced Materials Research, Beijing Normal University, 519087 Zhuhai, P. R. China
Search for more papers by this authorAbstract
The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg) and second-order harmonic generation (SHG), leads to the extreme scarcity in high-performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2Ba[(AgxNa1−x)2Sn2S7] (1, x=0; 1 series, x=0.1–0.6; Na2Ba[(Li0.58Na0.42)2Sn2S7], 1-0.6Li); Na2Sr[Cu2Sn2S7] (2); and Na2Ba[Cu2Sn2S7] (3). We use the structural tolerance factor (
) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser-induced damage threshold: 12×AGS), representing the best performance among the known Hg- or As-free sulfides to date.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218048-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. Chung, M. G. Kanatzidis, Chem. Mater. 2014, 26, 849–869;
- 1bA. Iyer, J. B. Cho, H. R. Byun, M. J. Waters, S. Hao, B. M. Oxley, V. Gopalan, C. Wolverton, J. M. Rondinelli, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2021, 143, 18204–18215;
- 1cM.-M. Chen, S.-H. Zhou, W. Wei, M.-Y. Ran, B. Li, X.-T. Wu, H. Lin, Q.-L. Zhu, ACS Mater. Lett. 2022, 4, 1264–1269.
- 2H. Wang, G. Gou, J. Li, Nano Energy 2016, 22, 507–513.
- 3R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Mater. Today 2018, 21, 611–630.
- 4
- 4aR.-A. Li, Z. Zhou, Y.-K. Lian, F. Jia, X. Jiang, M.-C. Tang, L.-M. Wu, J. Sun, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 11861–11865; Angew. Chem. 2020, 132, 11959–11963;
- 4bL. Luo, L. Wang, J. Chen, J. Zhou, Z. Yang, S. Pan, J. Li, J. Am. Chem. Soc. 2022, 144, 21916–21925;
- 4cH. Lin, W.-B. Wei, H. Chen, X.-T. Wu, Q.-L. Zhu, Coord. Chem. Rev. 2020, 406, 213150.
- 5D. Mei, W. Cao, N. Wang, X. Jiang, J. Zhao, W. Wang, J. Dang, S. Zhang, Y. Wu, P. Rao, Z. Lin, Mater. Horiz. 2021, 8, 2330–2334.
- 6C. Li, W. Yin, P. Gong, X. Li, M. Zhou, A. Mar, Z. Lin, J. Yao, Y. Wu, C. Chen, J. Am. Chem. Soc. 2016, 138, 6135–6138.
- 7
- 7aS. Hadke, M. Huang, C. Chen, Y. F. Tay, S. Chen, J. Tang, L. Wong, Chem. Rev. 2022, 122, 10170–10265;
- 7bZ. Xiao, W. Meng, J. V. Li, Y. Yan, ACS Energy Lett. 2017, 2, 29–35;
- 7cG. Li, Y. Chu, Z. Zhou, Chem. Mater. 2018, 30, 602–606.
- 8K. A. Kokh, V. V. Atuchin, S. V. Adichtchev, T. A. Gavrilova, A. M. Bakhadur, A. O. Klimov, I. V. Korolkov, N. V. Kuratieva, S. Mukherjee, N. V. Pervukhina, N. V. Surovtsev, CrystEngComm 2021, 23, 1025–1032.
- 9
- 9aG. Li, Z. Yang, J. Li, S. Pan, Chem. Commun. 2020, 56, 11565–11576;
- 9bA. Abudurusuli, J. Huang, P. Wang, Z. Yang, S. Pan, J. Li, Angew. Chem. Int. Ed. 2021, 60, 24131–24136; Angew. Chem. 2021, 133, 24333–24338;
- 9cJ. H. Zhang, S. S. Stoyko, A. J. Craig, P. Grima, J. W. Kotchey, J. I. Jang, J. A. Aitken, Chem. Mater. 2020, 32, 10045–10054.
- 10J. P. Sun, G. C. M. Wessler, T. Wang, T. Zhu, V. Blum, D. B. Mitzi, Chem. Mater. 2020, 32, 1636–1649.
- 11
- 11aS. Fujii, S. Gao, C. Tassel, T. Zhu, T. Broux, K. Okada, Y. Miyahara, A. Kuwabara, H. Kageyama, J. Am. Chem. Soc. 2021, 143, 10668–10675;
- 11bS. Yoshida, H. Akamatsu, R. Tsuji, O. Hernandez, H. Padmanabhan, A. Sen Gupta, A. S. Gibbs, K. Mibu, S. Murai, J. M. Rondinelli, V. Gopalan, J. Am. Chem. Soc. 2018, 140, 15690–15700.
- 12C. Ablitt, H. McCay, S. Craddock, L. Cooper, E. Reynolds, A. A. Mostofi, N. C. Bristowe, C. A. Murray, M. S. Senn, Chem. Mater. 2020, 32, 605–610.
- 13Details of Crystal data were listed in Tables S2–S5 in the Supporting Information. Deposition numbers 2159668 (1), 2102339 (1-0.1Ag), 2102340 (1-0.25Ag), 2102341 (1-0.4Ag), 2102342 (1-0.6Ag), 2123043 (1-0.6Li), 2102344 (2), and 2102343 (3) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 14W.-H. Lai, A. S. Haynes, L. Frazer, Y.-M. Chang, T.-K. Liu, J.-F. Lin, I–C. Liang, H.-S. Sheu, J. B. Ketterson, M. G. Kanatzidis, K.-F. Hsu, Chem. Mater. 2015, 27, 1316–1326.
- 15H. Chen, P. F. Liu, B. X. Li, H. Lin, L. M. Wu, X. T. Wu, Dalton Trans. 2018, 47, 429–437.
- 16Y. Y. Li, P. F. Liu, L. M. Wu, Chem. Mater. 2017, 29, 5259–5266.
- 17L. Nian, J. Huang, K. Wu, Z. Su, Z. Yang, S. Pan, RSC Adv. 2017, 7, 29378–29385.
- 18Y. Yang, Y. Chu, B. Zhang, K. Wu, S. Pan, Chem. Mater. 2021, 33, 4225–4230.
- 19Y. Yang, K. Wu, B. Zhang, X. Wu, M.-H. Lee, Chem. Mater. 2020, 32, 1281–1287.
- 20S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 21H. Lin, Y.-Y. Li, M.-Y. Li, Z. Ma, L.-M. Wu, X.-T. Wu, Q.-L. Zhu, J. Mater. Chem. C 2019, 7, 4638–4643.
- 22Y. Xiao, M.-M. Chen, Y.-Y. Shen, P.-F. Liu, H. Lin, Y. Liu, Inorg. Chem. Front. 2021, 8, 2835–2843.
- 23K. Wu, B. Zhang, Z. Yang, S. Pan, J. Am. Chem. Soc. 2017, 139, 14885–14888.
- 24Z. D. Sun, Y. Chi, S. P. Guo, J. Solid State Chem. 2019, 269, 225–232.
- 25
- 25aG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;
- 25bP. E. Blöchl, Phys. Rev. B 1994, 50, 17953;
- 25cG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758;
- 25dK. Burke, J. Chem. Phys. 2012, 136, 150901.
- 26R. W. Godby, M. Schlüter, L. J. Sham, Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36, 6497–6500.
- 27
- 27aY.-K. Lian, R.-A. Li, X. Liu, L.-M. Wu, L. Chen, Cryst. Growth Des. 2020, 20, 8084–8089;
- 27bQ.-Q. Liu, X. Liu, L.-M. Wu, L. Chen, Angew. Chem. Int. Ed. 2022, 61, e202205587; Angew. Chem. 2022, 134, e202205587.
- 28V. M. Huxter, T. Mirkovic, P. S. Nair, G. D. Scholes, Adv. Mater. 2008, 20, 2439–2443.
- 29Y.-X. Yu, L. Pan, M.-K. Son, M. T. Mayer, W.-D. Zhang, A. Hagfeldt, J. Luo, M. Gratzel, ACS Energy Lett. 2018, 3, 760–766.
- 30J. Yu, A. A. Suleiman, Z. Zheng, X. Zhou, T. Zhai, Adv. Funct. Mater. 2020, 30, 2001650.
- 31R. D. Eithiraj, G. Jaiganesh, G. Kalpana, M. Rajagopalan, Phys. Status Solidi B 2007, 244, 1337–1346.
- 32K. Maeda, N. Kawaida, R. Tsudome, K. Sakai, T. Ikari, Phys. Status Solidi C 2012, 9, 2271–2274.
- 33
- 33aM. Zhou, Y. Yang, Y. Guo, Z. Lin, J. Yao, Y. Wu, C. Chen, Chem. Mater. 2017, 29, 7993–8002;
- 33bH. Lin, L. Chen, J. S. Yu, H. Chen, L. M. Wu, Chem. Mater. 2017, 29, 499–503.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.