Direct Excitation of Aldehyde to Activate the C(sp2)−H Bond by Cobaloxime Catalysis toward Fluorenones Synthesis with Hydrogen Evolution
Dr. Jia-Dong Guo
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYa-Jing Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorChen-Hong Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorQiao He
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Xiu-Long Yang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorTian-Yu Ding
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorKe Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorRui-Nan Ci
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Bin Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Jia-Dong Guo
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYa-Jing Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorChen-Hong Wang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorQiao He
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Xiu-Long Yang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorTian-Yu Ding
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorKe Zhang
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorRui-Nan Ci
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Bin Chen
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Li-Zhu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAbstract
A new way to form fluorenones via the direct excitation of substrates instead of photocatalyst to activate the C(sp2)−H bond under redox-neutral condition is reported. Our design relies on the photoexcited aromatic aldehyde intermediates that can be intercepted by cobaloxime catalyst through single electron transfer for following β-H elimination. The generation of acyl radical and successful interception by a metal catalyst cobaloxime avoid the use of a photocatalyst and stoichiometric external oxidants, affording a series of highly substituted fluorenones, including six-membered ketones, such as xanthone and thioxanthone derivatives in good to excellent yields, and with hydrogen as the only byproduct. This catalytic system features a readily available metal catalyst, mild reaction conditions and broad substrate scope, in which sunlight reaction and scale-up experiments by continuous-flow approach make the new methodology sustainable and amenable for potentially operational procedures.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214944-sup-0001-misc_information.pdf8.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Shi, S. Gao, Tetrahedron 2016, 72, 1717–1735;
- 1bM. J. Robarge, S. M. Husbands, A. Kieltyka, R. Brodbeck, A. Thurkauf, A. H. Newman, J. Med. Chem. 2001, 44, 3175–3186;
- 1cR. F. M. Krueger, G. D. Mayer, Science 1970, 169, 1213–1214.
- 2
- 2aJ. T. Koivunen, L. Nissinen, J. Käpylä, J. Jokinen, M. Pihlavisto, A. Marjamäki, J. Heino, J. Huuskonen, O. T. Pentikäinen, J. Am. Chem. Soc. 2011, 133, 14558–14561;
- 2bA. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897–1091;
- 2cF. Uckert, Y.-H. Tak, K. Müllen, H. Bässler, Adv. Mater. 2000, 12, 905–908.
- 3
- 3aR. Ruzi, M. Zhang, K. Ablajan, C. Zhu, J. Org. Chem. 2017, 82, 12834–12839;
- 3bT. Fukuyama, S. Maetani, K. Miyagawa, I. Ryu, Org. Lett. 2014, 16, 3216–3219;
- 3cG. A. Olah, T. Mathew, M. Farnia, G. K. S. Prakash, Synlett 1999, 1999, 1067–1068.
- 4
- 4aN. Holmberg-Douglas, D. A. Nicewicz, Chem. Rev. 2022, 122, 1925–2016;
- 4bS. Patel, B. Rathod, S. Regu, S. Chak, A. Shard, ChemistrySelect 2020, 5, 10673–10691;
- 4cA. Banerjee, Z. Lei, M. Y. Ngai, Synthesis 2019, 51, 303–333;
- 4dY. Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, 9433–9520.
- 5J. Barluenga, M. Trincado, E. Rubio, J. M. González, Angew. Chem. Int. Ed. 2006, 45, 3140–3143; Angew. Chem. 2006, 118, 3212–3215.
- 6Z. Shi, F. Glorius, Chem. Sci. 2013, 4, 829–833.
- 7S. Wertz, D. Leifert, A. Studer, Org. Lett. 2013, 15, 928–931.
- 8
- 8aA. J.-L. Ayitou, J. Sivaguru, Chem. Commun. 2011, 47, 2568–2570;
- 8bL.-L. Chai, Y.-H. Zhao, D. J. Young, X. Lu, H.-X. Li, Org. Lett. 2022, 24, 6908–6913.
- 9
- 9aM. Giedyk, K. Goliszewska, D. Gryko, Chem. Soc. Rev. 2015, 44, 3391–3404;
- 9bG. N. Schrauzer, Acc. Chem. Res. 1968, 1, 97–103.
- 10T. Tsukamoto, G. Dong, Angew. Chem. Int. Ed. 2020, 59, 15249–15253; Angew. Chem. 2020, 132, 15361–15365.
- 11
- 11aJ.-X. Yu, Y.-Y. Cheng, B. Chen, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2022, 61, e202209293; Angew. Chem. 2022, 134, e202209293;
- 11bA. Shao, J. Chen, L. Wang, M. Yi, H. Yang, Y. Zhang, S. Fan, S. Chen, H. Wu, R. Shi, Org. Chem. Front. 2022, 9, 4379–4387;
- 11cT. Lei, G. Liang, Y.-Y. Cheng, B. Chen, C.-H. Tung, L.-Z. Wu, Org. Lett. 2020, 22, 5385–5389;
- 11dW.-Q. Liu, T. Lei, S. Zhou, X.-L. Yang, J. Li, B. Chen, J. Sivaguru, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc. 2019, 141, 13941–13947.
- 12
- 12aK. P. S. Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 2022, 122, 1543–1625;
- 12bW.-L. Yu, Z.-G. Ren, K.-X. Ma, H.-Q. Yang, J.-J. Yang, H. Zheng, W. Wu, P.-F. Xu, Chem. Sci. 2022, 13, 7947–7954;
- 12cC.-Y. Huang, J. Li, C.-J. Li, Nat. Commun. 2021, 12, 4010;
- 12dG. Prina Cerai, B. Morandi, Chem. Commun. 2016, 52, 9769–9772;
- 12eC.-J. Wu, J.-J. Zhong, Q.-Y. Meng, T. Lei, X.-W. Gao, C.-H. Tung, L.-Z. Wu, Org. Lett. 2015, 17, 884–887;
- 12fM. E. Weiss, L. M. Kreis, A. Lauber, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 11125–11128; Angew. Chem. 2011, 123, 11321–11324;
- 12gB. P. Branchaud, W. D. Detlefsen, Tetrahedron Lett. 1991, 32, 6273–6276;
- 12hR. Scheffold, G. Rytz, L. Walder, R. Orlinski, Z. Chilmonczyk, Pure Appl. Chem. 1983, 55, 1791–1797.
- 13L. Zhang, X. Si, Y. Yang, M. Zimmer, S. Witzel, K. Sekine, M. Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2019, 58, 1823–1827; Angew. Chem. 2019, 131, 1837–1841.
- 14
- 14aS. Jana, Z. Yang, C. Pei, X. Xu, R. M. Koenigs, Chem. Sci. 2019, 10, 10129–10134;
- 14bM. Abe, J. Chin. Chem. Soc. 2008, 55, 479–486;
- 14cG. Büchi, C. G. Inman, E. S. Lipinsky, J. Am. Chem. Soc. 1954, 76, 4327–4331.
- 15P. Du, J. Schneider, G. Luo, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2009, 48, 4952–4962.
- 16N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
- 17D. B. Denney, P. P. Klemchuk, J. Am. Chem. Soc. 1958, 80, 3289–3290.
- 18
- 18aJ. B. Singh, K. Mishra, T. Gupta, R. M. Singh, ChemistrySelect 2017, 2, 1207–1210;
- 18bH. Rao, X. Ma, Q. Liu, Z. Li, S. Cao, C.-J. Li, Adv. Synth. Catal. 2013, 355, 2191–2196;
- 18cP. Wang, H. Rao, R. Hua, C.-J. Li, Org. Lett. 2012, 14, 902–905.
- 19J. C. Dalton, F. C. Montgomery, J. Am. Chem. Soc. 1974, 96, 6230–6232.
- 20
- 20aD. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116, 10276–10341;
- 20bB. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300–2318.
- 21
- 21aJ. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940;
- 21bJ. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740–1741.
- 22D. Wang, M. M. S. Lee, W. Xu, G. Shan, X. Zheng, R. T. K. Kwok, J. W. Y. Lam, X. Hu, B. Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 5628–5632; Angew. Chem. 2019, 131, 5684–5688.
- 23
- 23aP. R. D. Murray, J. H. Cox, N. D. Chiappini, C. B. Roos, E. A. McLoughlin, B. G. Hejna, S. T. Nguyen, H. H. Ripberger, J. M. Ganley, E. Tsui, N. Y. Shin, B. Koronkiewicz, G. Qiu, R. R. Knowles, Chem. Rev. 2022, 122, 2017–2291;
- 23bM.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Rev. 2021, 121, 13051–13085;
- 23cK. Dong, Q. Liu, L.-Z. Wu, Acta Chim. Sin. 2020, 78, 299;
- 23dB. Chen, L.-Z. Wu, C.-H. Tung, Acc. Chem. Res. 2018, 51, 2512–2523;
- 23eH. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016–9085.
- 24
- 24aZ. Jia, L. Zhang, S. Luo, J. Am. Chem. Soc. 2022, 144, 10705–10710;
- 24bRitu, S. Das, Y.-M. Tian, T. Karl, N. Jain, B. König, ACS Catal. 2022, 12, 10326–10332;
- 24cH. Cao, Y. Kuang, X. Shi, K. L. Wong, B. B. Tan, J. M. C. Kwan, X. Liu, J. Wu, Nat. Commun. 2020, 11, 1956;
- 24dZ. Jia, Q. Yang, L. Zhang, S. Luo, ACS Catal. 2019, 9, 3589–3594;
- 24eK.-H. He, F.-F. Tan, C.-Z. Zhou, G.-J. Zhou, X.-L. Yang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 3080–3084; Angew. Chem. 2017, 129, 3126–3130;
- 24fQ. Yang, L. Zhang, C. Ye, S. Luo, L.-Z. Wu, C.-H. Tung, Angew. Chem. Int. Ed. 2017, 56, 3694–3698; Angew. Chem. 2017, 129, 3748–3752;
- 24gC.-J. Wu, Q.-Y. Meng, T. Lei, J.-J. Zhong, W.-Q. Liu, L.-M. Zhao, Z.-J. Li, B. Chen, C.-H. Tung, L.-Z. Wu, ACS Catal. 2016, 6, 4635–4639;
- 24hG. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen, J.-X. Jian, L.-Z. Wu, A. Lei, J. Am. Chem. Soc. 2015, 137, 9273–9280;
- 24iX.-W. Gao, Q.-Y. Meng, J.-X. Li, J.-J. Zhong, T. Lei, X.-B. Li, C.-H. Tung, L.-Z. Wu, ACS Catal. 2015, 5, 2391–2396.
- 25
- 25aM.-J. Zhou, L. Zhang, G. Liu, C. Xu, Z. Huang, J. Am. Chem. Soc. 2021, 143, 16470–16485;
- 25bK. C. Cartwright, J. A. Tunge, ACS Catal. 2018, 8, 11801–11806;
- 25cX. Hu, G. Zhang, F. Bu, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 1286–1290; Angew. Chem. 2018, 130, 1300–1304;
- 25dH. Cao, H. Jiang, H. Feng, J. M. C. Kwan, X. Liu, J. Wu, J. Am. Chem. Soc. 2018, 140, 16360–16367;
- 25eH. Yi, L. Niu, C. Song, Y. Li, B. Dou, A. K. Singh, A. Lei, Angew. Chem. Int. Ed. 2017, 56, 1120–1124; Angew. Chem. 2017, 129, 1140–1144;
- 25fY.-W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q.-Y. Meng, L.-Z. Wu, C.-H. Tung, J. Am. Chem. Soc. 2016, 138, 10080–10083;
- 25gJ.-J. Zhong, Q.-Y. Meng, B. Liu, X.-B. Li, X.-W. Gao, T. Lei, C.-J. Wu, Z.-J. Li, C.-H. Tung, L.-Z. Wu, Org. Lett. 2014, 16, 1988–1991;
- 25hQ.-Y. Meng, J.-J. Zhong, Q. Liu, X.-W. Gao, H.-H. Zhang, T. Lei, Z.-J. Li, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc. 2013, 135, 19052–19055.
- 26
- 26aR.-N. Ci, C. Huang, L.-M. Zhao, J. Qiao, B. Chen, K. Feng, C.-H. Tung, L.-Z. Wu, CCS Chem. 2022, 4, 2946–2952;
- 26bC. Huang, R.-N. Ci, J. Qiao, X.-Z. Wang, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 11779–11783; Angew. Chem. 2021, 133, 11885–11889;
- 26cJ. Qiao, Z.-Q. Song, C. Huang, R.-N. Ci, Z. Liu, B. Chen, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 27201–27205; Angew. Chem. 2021, 133, 27407–27411;
- 26dC. Huang, J. Qiao, R.-N. Ci, X.-Z. Wang, Y. Wang, J.-H. Wang, B. Chen, C.-H. Tung, L.-Z. Wu, Chem 2021, 7, 1244–1257;
- 26eL.-M. Zhao, Q.-Y. Meng, X.-B. Fan, C. Ye, X.-B. Li, B. Chen, V. Ramamurthy, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2017, 56, 3020–3024; Angew. Chem. 2017, 129, 3066–3070.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.