Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde
Bo Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHong Tang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Aneta Turlik
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorZhao Wan
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Xiao-Song Xue
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorProf. Dr. Li Li
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050 China
Search for more papers by this authorDr. Xiaoxiao Yang
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050 China
Search for more papers by this authorDr. Jiuyuan Li
Asymchem Life Science Co., Ltd. TEDA, Tianjin, 300457 China
Search for more papers by this authorProf. Dr. Gang He
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Gong Chen
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorBo Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHong Tang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Aneta Turlik
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorZhao Wan
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Xiao-Song Xue
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorProf. Dr. Li Li
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050 China
Search for more papers by this authorDr. Xiaoxiao Yang
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050 China
Search for more papers by this authorDr. Jiuyuan Li
Asymchem Life Science Co., Ltd. TEDA, Tianjin, 300457 China
Search for more papers by this authorProf. Dr. Gang He
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Gong Chen
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDedicated to Professor Samuel J. Danishefsky
Abstract
Stapling of peptides by intramolecular crosslinking of two neighboring amino acid side chains offers an important tool to modulate the structure and properties of peptides. In comparison to the stapling of artificially engineered peptide substrates, methods for stapling native peptides are more desirable for easier accessibility and genetic encodability. However, the existing strategy for selectivity control in the stapling of native peptides is relatively limited: the site of anchoring is often dominated by Cys, and the means for achieving the position selectivity among the same type of residues at different locations is lacking. We have developed a simple and powerful strategy for stapling native peptides at lysine residues with formaldehyde by the cooperation of nearby tyrosine or arginine residues. The stapling reactions can proceed with high efficiency and residue selectivity under mild conditions, and generate linchpins with distinct physiochemical properties. The new method for peptide stapling enables unique control of position-selectivity for substrates bearing multiple reaction sites by reactivity that can be readily built in the peptide sequence.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202016267-sup-0001-misc_information.pdf28.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. B. H. Kent, J. Pept. Sci. 2015, 21, 136–138;
- 1bA. Henninot, J. C. Collins, J. M. Nuss, J. Med. Chem. 2018, 61, 1382–1414;
- 1cD. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chem. Biol. Drug Des. 2013, 81, 136–147;
- 1dC. Lipinski, A. Hopkins, Nature 2004, 432, 855–861;
- 1eJ. L. Lau, M. K. Dunn, Bioorg. Med. Chem. 2018, 26, 2700–2707.
- 2
- 2aC. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 5740;
- 2bN. Krall, F. P. da Cruz, O. Boutureira, G. J. L. Bernardes, Nat. Chem. 2016, 8, 103–113;
- 2cJ. N. deGruyter, L. R. Malins, P. S. Baran, Biochemistry 2017, 56, 3853–3873;
- 2dC. B. Rosen, M. B. Francis, Nat. Chem. Biol. 2017, 13, 697–705;
- 2eQ-Y. Hu, F. Bertib, R. Adamo, Chem. Soc. Rev. 2016, 45, 1691–1719;
- 2fT. Tamura, I. Hamachi, J. Am. Chem. Soc. 2019, 141, 2782–2799.
- 3
- 3aL. D. Walensky, G. H. Bird, J. Med. Chem. 2014, 57, 6275–6288;
- 3bY. H. Lau, P. de Andrade, Y. Wu, D. R. Spring, Chem. Soc. Rev. 2015, 44, 91–102;
- 3cJ. Iegre, J. S. Gaynord, N. S. Robertson, H. F. Sore, M. Hyvonen, D. R. Spring, Adv. Therap. 2018, 1, 1800052;
- 3dR. Derda, M. R. Jafari, Protein Pept. Lett. 2018, 25, 1–25;
- 3eL. Reguera, D. G. Rivera, Chem. Rev. 2019, 119, 9836–9860;
- 3fC. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509–524;
- 3gA. A. Vinogradov, Y. Yin, H. Suga, J. Am. Chem. Soc. 2019, 141, 4167–4187.
- 4Stapling using a linchpin is sometimes referred to as a two-component stapling (see ref.[3b]).
- 5
- 5aL. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. D. Wright, G. Wagner, G. L. Verdine, S. J. Korsmeyer, Science 2004, 305, 1466–1470;
- 5bF. M. Brunel, P. E. Dawson, Chem. Commun. 2005, 2552–2554;
- 5cN. E. Shepherd, H. N. Hoang, G. Abbenante, D. P. Fairlie, J. Am. Chem. Soc. 2005, 127, 2974–2983;
- 5dM. Scrima, A. Le Chevalier-Isaad, P. Rovero, A. M. Papini, M. Chorev, A. M. D'Ursi, Eur. J. Org. Chem. 2010, 446–457;
- 5eC. M. Haney, M. T. Loch, W. S. Horne, Chem. Commun. 2011, 47, 10915–10917;
- 5fY. H. Lau, P. de Andrade, S.-T. Quah, M. Rossmann, L. Laraia, N. Skold, T. J. Sum, P. J. E. Rowling, T. L. Joseph, C. Verma, M. Hyvonen, L. S. Itzhaki, A. R. Venkitaraman, C. J. Brown, D. P. Lane, D. R. Spring, Chem. Sci. 2014, 5, 1804–1809.
- 6
- 6aK. V. Lawson, T. E. Rose, P. G. Harran, Proc. Natl. Acad. Sci. USA 2013, 110, E3753–E3760;
- 6bJ. R. Frost, C. C. Scully, A. K. Yudin, Nat. Chem. 2016, 8, 1105.
- 7
- 7aJ. M. Chalker, G. J. L. Bernardes, Y. A. Lin, B. G. Davis, Chem. Asian J. 2009, 4, 630–640;
- 7bJ. R. Kumita, O. S. Smart, G. A. Woolley, Proc. Natl. Acad. Sci. USA 2000, 97, 3803–3808;
- 7cC. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 2009, 5, 502–507;
- 7dH. Jo, N. Meinhardt, Y. Wu, S. Kulkarni, X. Hu, K. E. Low, P. L. Davies, W. F. DeGrado, D. C. Greenbaum, J. Am. Chem. Soc. 2012, 134, 17704–17713;
- 7eA. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y.-S. Lin, B. L. Pentelute, J. Am. Chem. Soc. 2013, 135, 5946–5949;
- 7fY. Wang, D. H.-C. Chou, Angew. Chem. Int. Ed. 2015, 54, 10931–10934; Angew. Chem. 2015, 127, 11081–11084;
- 7gN. Assem, D. J. Ferreira, D. W. Wolan, P. E. Dawson, Angew. Chem. Int. Ed. 2015, 54, 8665–8668; Angew. Chem. 2015, 127, 8789–8792;
- 7hS. P. Brown, A. B. Smith III, J. Am. Chem. Soc. 2015, 137, 4034–4037.
- 8
- 8aB. A. Griffin, S. R. Adams, R. Y. Tsien, Science 1998, 281, 269–272;
- 8bC. Zhang, M. Welborn, T. Zhu, N. J. Yang, M. S. Santos, T. Van Voorhis, B. L. Pentelute, Nat. Chem. 2016, 8, 120–128;
- 8cJ. Willwacher, R. Raj, S. Mohammed, B. G. Davis, J. Am. Chem. Soc. 2016, 138, 8678–8681.
- 9
- 9aK. Tanaka, T. Masuyama, K. Hasegawa, T. Tahara, H. Mizuma, Y. Wada, Y. Watanabe, K. Kukase, Angew. Chem. Int. Ed. 2008, 47, 102–105; Angew. Chem. 2008, 120, 108–111;
- 9bP. M. S. D. Cal, J. B. Vicente, E. Pires, A. V. Coelho, L. S. F. Veiros, C. Cordeiro, P. M. P. Gois, J. Am. Chem. Soc. 2012, 134, 10299–10305;
- 9cS. T. Larda, D. Pichugin, R. S. Prosse, Bioconjugate Chem. 2015, 26, 2376–2383;
- 9dM. J. Matos, B. L. Oliveira, N. Martínez-Sáez, A. Guerreiro, P. M. S. D. Cal, J. Bertoldo, M. M. Maneiro, E. Perkins, J. Howard, M. J. Deery, J. M. Chalker, F. Corzana, G. Jimenez-Oses, G. J. L. Bernardes, J. Am. Chem. Soc. 2018, 140, 4004–4017;
- 9eK. Kubota, P. Dai, B. L. Pentelute, S. L. Buchwald, J. Am. Chem. Soc. 2018, 140, 3128–3133.
- 10
- 10aY. Zhang, Q. Zhang, C. T. T. Wong, X. Li, J. Am. Chem. Soc. 2019, 141, 12274–12279;
- 10bM. Todorovic, K. D. Schwab, J. Zeisler, C. Zhang, F. Benard, D. M. Perrin, Angew. Chem. Int. Ed. 2019, 58, 14120–14124; Angew. Chem. 2019, 131, 14258–14262.
- 11
- 11aE. A. Hoffman, B. L. Frey, L. M. Smith, D. T. Auble, J. Biol. Chem. 2015, 290, 26404–26411;
- 11bA. Gavrilov, S. V. Razin, G. Cavalli, Briefings Funct. Genomics 2014, 14, 163–165.
- 12
- 12aH. T. Clarke, B. Gillespie, S. Z. Weisshaus, J. Am. Chem. Soc. 1933, 55, 4571–4587;
- 12bH. Fraenkeyl-Conrat, H. S. Olcott, J. Am. Chem. Soc. 1946, 68, 34–37;
- 12cV. Jackson, R. Chalkley, Proc. Natl. Acad. Sci. USA 1981, 78, 6081–6085;
- 12dB. Metz, G. F. A. Kersten, P. Hoogerhout, H. F. Brugghe, H. A. M. Timmermans, A. de Jong, H. Meiring, J. ten Hove, W. E. Hennink, D. J. A. Crommelin, W. Jiskoot, J. Biol. Chem. 2004, 279, 6235–6243;
- 12eB. Metz, G. F. A. Kersten, G. J. E. Baart, A. de Jong, H. Meiring, J. ten Hove, M. J. van Steenbergen, W. E. Hennink, D. J. A. Crommelin, W. Jiskoot, Bioconjugate Chem. 2006, 17, 815–822;
- 12fJ. Toews, J. C. Rogalski, T. J. Clark, J. Kast, Anal. Chim. Acta 2008, 618, 168–183;
- 12gK. Lu, W. Ye, L. Zhou, L. B. Collins, X. Chen, A. Gold, L. M. Ball, J. A. Swenberg, J. Am. Chem. Soc. 2010, 132, 3388–3399;
- 12hJ. J. A. G. Kamps, R. J. Hopkinson, C. J. Schofield, T. D. W. Claridge, Commun. Chem. 2019, 2, 216.
- 13
- 13aN. S. Joshi, L. R. Whitaker, M. B. Francis, J. Am. Chem. Soc. 2004, 126, 15942–15943;
- 13bJ. M. McFarland, N. S. Joshi, M. B. Francis, J. Am. Chem. Soc. 2008, 130, 7639–7644;
- 13cJ. I. Macdonald, H. K. Munch, T. Moore, M. B. Francis, Nat. Chem. Biol. 2015, 11, 326.
- 14I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev. Chem. 2017, 1, 0088.
- 15Both KaY and KaR linkages are stable in aqueous solution of a wide range of pH (1–12) at ambient temperature. They are also stable at 60 °C at pH 7.3 (6 h). In comparison, KaR linkage is slightly less stable and partially breaks down in TFA at rt (<10 %, 6 h) (see SI for details).
- 16
- 16aP. M. Cromm, K. Wallraven, A. Glas, D. Bier, A. Fürstner, C. Ottmann, T. N. Grossmann, ChemBioChem 2016, 17, 1915–1919;
- 16bF. Ternois, J. Sticht, S. Duquerroy, H.-G. Krausslich, F. A. Rey, Nat. Struct. Mol. Biol. 2012, 42, 1950–1958;
- 16cT. N. Grossmanna, J. T.-H. Yeh, B. R. Bowmana, Q. Chu, R. E. Moellering, G. L. Verdine, Proc. Natl. Acad. Sci. USA 2012, 109, 17942–17947;
- 16dJ. Y. Chu, L. T. Lee, C. H. Lai, H. Vaudry, Y. S. Chan, W. H. Yung, B. K. Chow, Proc. Natl. Acad. Sci. USA 2009, 106, 15961–15966.
- 17M. Ruszkowski, Z. Dauter, Protein Sci. 2016, 25, 1734–1736.
- 18Besides terminal amino groups, aminal crosslinkings between two nearby Lys residues can also cause problems for both KaY and KaR stapling reactions.
- 19
- 19aM. A. Gauthier, H. A. Klok, Biomacromolecules 2011, 12, 482–493;
- 19bV. Grundler, K. Gademann, ACS Med. Chem. Lett. 2014, 5, 1290–1295.
- 20W.-Y. Qu, D.-M. She, J. Zhao, D.-J. Lin, Q.-L. Huang, F.-M. Li, Synth. Commun. 2012, 42, 1950–1958.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.