Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport
Dr. Cheng Ma
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorShaojun Wu
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yang Zhou
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
These authors contributed equally to this work.
Search for more papers by this authorHui-Fang Wei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Dr. Jianrong Zhang
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zixuan Chen
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Dr. Jun-Jie Zhu
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
Dr. Wenlei Zhu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorDr. Cheng Ma
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorShaojun Wu
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yang Zhou
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
These authors contributed equally to this work.
Search for more papers by this authorHui-Fang Wei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Dr. Jianrong Zhang
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Zixuan Chen
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Dr. Jun-Jie Zhu
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuehe Lin
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorCorresponding Author
Dr. Wenlei Zhu
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA
Search for more papers by this authorAbstract
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)32+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a “catalytic route”. Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)33+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202012171-sup-0001-misc_information.pdf2.2 MB | Supplementary |
ange202012171-sup-0001-Movie_S1.mp4632.4 KB | Supplementary |
ange202012171-sup-0001-Movie_S2.mp42.3 MB | Supplementary |
ange202012171-sup-0001-Movie_S3.mp41,019.4 KB | Supplementary |
ange202012171-sup-0001-Movie_S4.mp41.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Norregaard, R. Metzler, C. M. Ritter, K. Berg-Sørensen, L. B. Oddershede, Chem. Rev. 2017, 117, 4342–4375;
- 1bJ. P. Junker, A. van Oudenaarden, Cell 2014, 157, 8–11.
- 2
- 2aX. T. Zheng, C. M. Li, Chem. Soc. Rev. 2012, 41, 2061–2071;
- 2bY. Yang, G. Shen, H. Wang, H. Li, T. Zhang, N. Tao, X. Ding, H. Yu, Proc. Natl. Acad. Sci. USA 2018, 115, 10275–10280.
- 3S.-L. Liu, Z.-G. Wang, Z.-L. Zhang, D.-W. Pang, Chem. Soc. Rev. 2016, 45, 1211–1224.
- 4B. Z. Tian, T. Cohen-Karni, Q. Qing, X. J. Duan, P. Xie, C. M. Lieber, Science 2010, 329, 830–834.
- 5
- 5aY. Takahashi, A. I. Shevchuk, P. Novak, B. Babakinejad, J. Macpherson, P. R. Unwin, H. Shiku, J. Gorelik, D. Klenerman, Y. E. Korchev, T. Matsue, Proc. Natl. Acad. Sci. USA 2012, 109, 11540–11545;
- 5bC. Amatore, S. Arbault, M. Guille, F. Lemaitre, Chem. Rev. 2008, 108, 2585–2621.
- 6J. Abbott, T. Ye, L. Qin, M. Jorgolli, R. S. Gertner, D. Ham, H. Park, Nat. Nanotechnol. 2017, 12, 460–466.
- 7W. Miao, Chem. Rev. 2008, 108, 2506–2553.
- 8
- 8aA. Zanut, A. Fiorani, S. Canola, T. Saito, N. Ziebart, S. Rapino, S. Rebeccani, A. Barbon, T. Irie, H. P. Josel, F. Negri, M. Marcaccio, M. Windfuhr, K. Imai, G. Valenti, F. Paolucci, Nat. Commun. 2020, 11, 2668;
- 8bJ. Yu, H. Saada, R. Abdallah, G. Loget, N. Sojic, Angew. Chem. Int. Ed. 2020, 59, 15157–15160; Angew. Chem. 2020, 132, 15269–15272.
- 9
- 9aM. J. Zhu, J. B. Pan, Z. Q. Wu, X. Y. Gao, W. Zhao, X. H. Xia, J. J. Xu, H. Y. Chen, Angew. Chem. Int. Ed. 2018, 57, 4010–4014; Angew. Chem. 2018, 130, 4074–4078;
- 9bC. Ma, H.-F. Wei, M.-X. Wang, S. Wu, Y.-C. Chang, J. Zhang, L.-P. Jiang, W. Zhu, Z. Chen, Y. Lin, Nano Lett. 2020, 20, 5008–5016.
- 10C. Ma, W. Wu, L. Li, S. Wu, J. Zhang, Z. Chen, J. J. Zhu, Chem. Sci. 2018, 9, 6167–6175.
- 11
- 11aG. Valenti, M. Zangheri, S. E. Sansaloni, M. Mirasoli, A. Penicaud, A. Roda, F. Paolucci, Chem. Eur. J. 2015, 21, 12640–12645;
- 11bF. Deiss, C. N. LaFratta, M. Symer, T. M. Blicharz, N. Sojic, D. R. Walt, J. Am. Chem. Soc. 2009, 131, 6088–6089;
- 11cM. Sentic, M. Milutinovic, F. Kanoufi, D. Manojlovic, S. Arbault, N. Sojic, Chem. Sci. 2014, 5, 2568–2572.
- 12H. Ding, W. Guo, B. Su, Angew. Chem. Int. Ed. 2020, 59, 449–456; Angew. Chem. 2020, 132, 457–464.
- 13C. Cui, Y. Chen, D. Jiang, H. Y. Chen, J. Zhang, J. J. Zhu, Anal. Chem. 2019, 91, 1121–1125.
- 14
- 14aG. Valenti, S. Scarabino, B. Goudeau, A. Lesch, M. Jović, E. Villani, M. Sentic, S. Rapino, S. Arbault, F. Paolucci, N. Sojic, J. Am. Chem. Soc. 2017, 139, 16830–16837;
- 14bS. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jović, S. Rapino, F. Paolucci, S. Arbault, N. Sojic, J. Am. Chem. Soc. 2018, 140, 14753–14760;
- 14cJ. Zhang, R. Jin, D. Jiang, H. Y. Chen, J. Am. Chem. Soc. 2019, 141, 10294–10299;
- 14dH. Ju, N. Wang, H. Gao, Y. Li, G. Li, W. Chen, Z. Jin, J. Lei, Q. Wei, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202011176; Angew. Chem. 2020, https://doi.org/10.1002/ange.202011176.
- 15
- 15aR. He, H. Tang, D. Jiang, H. Y. Chen, Anal. Chem. 2016, 88, 2006–2009;
- 15bY. Wang, R. Jin, N. Sojic, D. Jiang, H. Y. Chen, Angew. Chem. Int. Ed. 2020, 59, 10416–10420; Angew. Chem. 2020, 132, 10502–10506;
- 15cJ. Xu, P. Huang, Y. Qin, D. Jiang, H. Y. Chen, Anal. Chem. 2016, 88, 4609–4612.
- 16
- 16aA. J. Bard, Electrogenerated chemiluminescence, New York, Marcel Dekker, 2004;
10.1201/9780203027011 Google Scholar
- 16bL. Dennany, R. J. Forster, J. F. Rusling, J. Am. Chem. Soc. 2003, 125, 5213–5218.
- 17
- 17aF. Kanoufi, Y. B. Zu, A. J. Bard, J. Phys. Chem. B 2001, 105, 210–216;
- 17bA. Chovin, P. Garrigue, P. Vinatier, N. Sojic, Anal. Chem. 2004, 76, 357–364.
- 18W. Miao, J. P. Choi, A. J. Bard, J. Am. Chem. Soc. 2002, 124, 14478–14485.
- 19
- 19aS. C. Weatherly, I. V. Yang, P. A. Armistead, H. H. Thorp, J. Phys. Chem. B 2003, 107, 372–378;
- 19bJ. Cadet, T. Douki, J. L. Ravanat, Acc. Chem. Res. 2008, 41, 1075–1083.
- 20J. B. Noffsinger, N. D. Danielson, Anal. Chem. 1987, 59, 865–868.
- 21Y. He, Y. Chai, R. Yuan, H. Wang, L. Bai, Y. Cao, Y. Yuan, Biosens. Bioelectron. 2013, 50, 294–299.
- 22B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The Chemical Components of a Cell, Molecular Biology of the Cell, 4th ed., New York, Garland Science, 2002.
- 23I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, L. T. Perelman, Proc. Natl. Acad. Sci. USA 2007, 104, 17255–17260.
- 24X. Chen, Q. Xia, Y. Cao, Q. Min, J. Zhang, Z. Chen, H.-Y. Chen, J.-J. Zhu, Nat. Commun. 2017, 8, 1498.
- 25D. H. Johnston, K. C. Glasgow, H. H. Thorp, J. Am. Chem. Soc. 1995, 117, 8933–8938.
- 26Y. W. Lam, L. Trinkle-Mulcahy, F1000prime reports 2015, 7, 48.
- 27F. M. Boisvert, S. van Koningsbruggen, J. Navascues, A. I. Lamond, Nat. Rev. Mol. Cell Biol. 2007, 8, 574–585.
- 28J. M. Nunnari, D. L. Zimmerman, S. C. Ogg, P. Walter, Nature 1991, 352, 638–640.
- 29
- 29aX. Zhang, X. Cheng, L. Yu, J. Yang, R. Calvo, S. Patnaik, X. Hu, Q. Gao, M. Yang, M. Lawas, M. Delling, J. Marugan, M. Ferrer, H. Xu, Nat. Commun. 2016, 7, 12109;
- 29bJ. Lee, S. Giordano, J. Zhang, Biochem. J. 2012, 441, 523–540;
- 29cZ. Chen, J. Li, X. Chen, J. Cao, J. Zhang, Q. Min, J. J. Zhu, J. Am. Chem. Soc. 2015, 137, 1903–1908.
- 30R. Scherz-Shouval, Z. Elazar, Trends Biochem. Sci. 2011, 36, 30–38.
- 31J. Jie, K. Liu, L. Wu, H. Zhao, D. Song, H. Su, Sci. Adv. 2017, 3, e1700171.
- 32
- 32aJ. C. Weaver, J. Cell. Biochem. 1993, 51, 426–435;
- 32bJ. Olofsson, K. Nolkrantz, F. Ryttsen, B. A. Lambie, S. G. Weber, O. Orwar, Curr. Opin. Biotechnol. 2003, 14, 29–34;
- 32cT. Y. Tsong, Biophys. J. 1991, 60, 297–306.
- 33J. A. Lundqvist, F. Sahlin, M. A. Aberg, A. Stromberg, P. S. Eriksson, O. Orwar, Proc. Natl. Acad. Sci. USA 1998, 95, 10356–10360.
- 34
- 34aS. Sarbazvatan, D. Sardari, N. Taheri, K. Sepanloo, Med. Eng. Phys. 2015, 37, 1015–1019;
- 34bT. Kotnik, F. Bobanovic, D. Miklavcic, Bioelectrochem. Bioenerg. 1997, 43, 285–291.
- 35
- 35aW. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, N. Tao, Nat. Chem. 2011, 3, 249–255;
- 35bC. R. Keese, J. Wegener, S. R. Walker, I. Giaever, Proc. Natl. Acad. Sci. USA 2004, 101, 1554–1559.
- 36L. Xiang, K. Chen, R. Yan, W. Li, K. Xu, Nat. Methods 2020, 17, 524–530.
- 37K. Xu, H. P. Babcock, X. Zhuang, Nat. Methods 2012, 9, 185–188.
- 38
- 38aE. O. Potma, W. P. de Boeij, L. Bosgraaf, J. Roelofs, P. J. van Haastert, D. A. Wiersma, Biophys. J. 2001, 81, 2010–2019;
- 38bM. Baum, F. Erdel, M. Wachsmuth, K. Rippe, Nat. Commun. 2014, 5, 4494.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.