Funktionelle Gemischtmetall-organische Gerüste mit Metalloliganden
Dr. Madhab C. Das
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorDr. Shengchang Xiang
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorDr. Zhangjing Zhang
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorCorresponding Author
Prof. Dr. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428Search for more papers by this authorDr. Madhab C. Das
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorDr. Shengchang Xiang
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorDr. Zhangjing Zhang
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Search for more papers by this authorCorresponding Author
Prof. Dr. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428
Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698 (USA), Fax: (+1) 210-458-7428Search for more papers by this authorAbstract
Die Immobilisierung funktioneller Zentren innerhalb von Metall-organischen Gerüsten (MOFs) ist für ihre Fähigkeit zur Erkennung kleiner Moleküle und somit für ihre funktionellen Eigenschaften von großer Bedeutung. Das Metalloligandverfahren ermöglicht es uns, eine Vielzahl unterschiedlicher funktioneller Zentren wie offene, katalytisch aktive und photoaktive Metallzentren, chirale Porenumgebungen und Poren abstimmbarer Größe/Krümmung in Gemischtmetall-organischen Gerüsten (M′MOFs) zielgerichtet zu immobilisieren. In diesem Kurzaufsatz richten wir die Aufmerksamkeit auf einige wichtige funktionelle M′MOFs mit Metalloliganden für die Gasspeicherung und -trennung, die enantioselektive Trennung, die heterogene asymmetrische Katalyse und die Sensorik sowie als photoaktive, nanoskalige Materialien für die Wirkstoff-Freisetzung und biomedizinische Bildgebung.
References
- 1
- 1aS. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. 2004, 116, 2388; Angew. Chem. Int. Ed. 2004, 43, 2334;
- 1bO. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705;
- 1cJ. J. Perry IV, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400;
- 1dN. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2005, 38, 176;
- 1eK. S. Suslick, P. Bhyrappa, J.-H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry, S. R. Wilson, Acc. Chem. Res. 2005, 38, 283;
- 1fL. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248;
- 1gO. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166;
- 1hG. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380;
- 1iL. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294;
- 1jW. Lin, W. J. Rieter, K. M. L. Taylor, Angew. Chem. 2009, 121, 660; Angew. Chem. Int. Ed. 2009, 48, 650;
- 1kJ. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477;
- 1lZ. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315;
- 1mT. Dueren, Y.-S. Bae, R. Q. Snurr, Chem. Soc. Rev. 2009, 38, 1237;
- 1nH.-L. Jiang, Q. Xu, Chem. Commun. 2011, 47, 3351;
- 1oG. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430;
- 1pS. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870;
- 1qR. E. Morris, P. S. Wheatley, Angew. Chem. 2008, 120, 5044; Angew. Chem. Int. Ed. 2008, 47, 4966;
- 1rX. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012;
- 1sL. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem. 2006, 118, 632; Angew. Chem. Int. Ed. 2006, 45, 616;
- 1tS. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, M. Schröder, Nat. Chem. 2009, 1, 487;
- 1uAn, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc. 2010, 132, 38;
- 1vJ. Zhang, J. Bu, S. Chen, T. Wu, S. Zheng, Y. Chen, R. Nieto, P. Feng, X. Bu, Angew. Chem. 2010, 122, 9060; Angew. Chem. Int. Ed. 2010, 49, 8876;
- 1wJ.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2009, 131, 5516;
- 1xM. C. Das, P. K. Bharadwaj, J. Am. Chem. Soc. 2009, 131, 10942;
- 1yJ. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982;
- 1zB. Chen, S. C. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115.
- 2M. Eddaoudi, J. Kim, N. L. Rosi, D. T. Vodak, J. Wachter, M. O′Keeffe, O. M. Yaghi, Science 2002, 295, 469.
- 3R. Vaidhyanathan, S. S. Iremonger, K. W. Dawson, G. K. H. Shimizu, Chem. Commun. 2009, 5230; R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi, T. K. Woo, Science 2010, 330, 650.
- 4B. F. Abrahams, B. F. Hoskins, D. M. Michail, R. Robson, Nature 1994, 369, 727.
- 5
- 5aY. Pei, M. Verdaguer, O. Kahn, J. Sletten, J. P. Renard, J. Am. Chem. Soc. 1986, 108, 7428;
- 5bO. Kahn, Acc. Chem. Res. 2000, 33, 647.
- 6M. E. Kosal, J.-H. Chou, S. R. Wilson, K. S. Suslick, Nat. Mater. 2002, 1, 118.
- 7aA. Hu, H. L. Ngo, W. Lin, Angew. Chem. 2003, 115, 6182; Angew. Chem. Int. Ed. 2003, 42, 6000;
- 7bA. Hu, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2003, 125, 11490.
- 8
- 8aR. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S. Noro, S. Kitagawa, Angew. Chem. 2004, 116, 2738;
10.1002/ange.200352596 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2684;
- 8bH. Sakamoto, R. Matsuda, S. Bureekaew, D. Tanaka, S. Kitagawa, Chem. Eur. J. 2009, 15, 4985.
- 9B. Chen, F. R. Fronczek, A. W. Maverick, Inorg. Chem. 2004, 43, 8209.
- 10B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, K. M. Thomas, J. Am. Chem. Soc. 2008, 130, 6411.
- 11S. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-R. Ding, M.-H. Xie, C.-D. Wu, M. C. Das, R. Gill, K. M. Thomas, B. Chen, Nat. Commun. 2011, 2, 204.
- 12E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382.
- 13G. Yuan, C. Zhu, W. Xuan, Y. Cui, Chem. Eur. J. 2009, 15, 6428.
- 14S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Commun. 2006, 2563.
- 15F. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390.
- 16
- 16aC.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940;
- 16bC.-D. Wu, W. Lin, Angew. Chem. 2007, 119, 1093; Angew. Chem. Int. Ed. 2007, 46, 1075;
- 16cL. Ma, J. M. Falkowski, C. Abney, W. Lin, Nat. Chem. 2010, 2, 838;
- 16dL. Ma, C.-D. Wu, M. M. Wanderley, W. Lin, Angew. Chem. 2010, 122, 8420; Angew. Chem. Int. Ed. 2010, 49, 8244.
- 17Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922.
- 18
- 18aB. D. Chandler, D. T. Cramb, G. K. H. Shimizu, J. Am. Chem. Soc. 2006, 128, 10403;
- 18bB. D. Chandler, A. P. Côté, D. T. Cramb, J. M. Hill, G. K. H. Shimizu, Chem. Commun. 2002, 1900;
- 18cB. D. Chandler, J. O. Yu, D. T. Cramb, G. K. H. Shimizu, Chem. Mater. 2007, 19, 4467.
- 19A. J. Blake, N. R. Champness, T. L. Easun, D. R. Allan, H. Nowell, M. W. George, J. Jia, X.-Z. Sun, Nat. Chem. 2010, 2, 688.
- 20C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, W. Li, J. Am. Chem. Soc. 2010, 132, 12767.
- 21D. W. Smithenry, S. R. Wilson, K. S. Suslick, Inorg. Chem. 2003, 42, 7719.
- 22J.-P. Lang, Q.-F. Xu, R.-X. Yuan, B. F. Abrahams, Angew. Chem. 2004, 116, 4845; Angew. Chem. Int. Ed. 2004, 43, 4741.
- 23S. R. Halper, L. Do, J. R. Stork, S. M. Cohen, J. Am. Chem. Soc. 2006, 128, 15255.
- 24S. Kitagawa, S.-I. Noro, T. Nakamura, Chem. Commun. 2006, 701.
- 25Y. Zhang, B. Chen, F. R. Fronczek, A. W. Maverick, Inorg. Chem. 2008, 47, 4433.
- 26E.-Y. Choi, P. M. Barron, R. W. Novotny, H.-T. Son, C. Hu, W. Choe, CrystEngComm 2009, 11, 553.
- 27M.-H. Xie, X.-L. Yang, C.-D. Wu, Chem. Commun. 2011, 47, 5521.
- 28Lit. [1j].
- 29W. J. Rieter, K. M. Pott, K. M. L. Taylor, W. Lin, J. Am. Chem. Soc. 2008, 130, 11584.
- 30D. Liu, R. C. Huxford, W. Lin, Angew. Chem. 2011, 123, 3780; Angew. Chem. Int. Ed. 2011, 50, 3696.
- 31
- 31aM. Oh, C. A. Mirkin, Nature 2005, 438, 651;
- 31bM. Oh, C. A. Mirkin, Angew. Chem. 2006, 118, 5618;
10.1002/ange.200601918 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5492;
- 31cY.-M. Jeon, J. Heo, C. A. Mirkin, J. Am. Chem. Soc. 2007, 129, 7480.
- 32J. J. M. Beenakker, V. D. Borman, S. Y. Krylov, Chem. Phys. Lett. 1995, 232, 379.
- 33R. Noyori, Angew. Chem. 2002, 114, 2108–2123;
10.1002/1521-3757(20020617)114:12<2108::AID-ANGE2108>3.0.CO;2-Z Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2008–2022, zit. Lit.10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 34In MOFs und verwandten Materialien sind BET-Oberflächen aussagekräftiger als Langmuir-Oberflächen; siehe T. Dueren, F. Millange, G. Ferey, K. S. Walton, R. Q. Snurr, J. Phys. Chem. C 2007, 111, 15350.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.