Antiresonance in Transmission through a Heterojunction Formed by Topological Nodal-Line Semimetals
Di Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorXue-Si Li
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorLian-Lian Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorTong-Tong Xu
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorHao Chu
Faculty of Robot Science and Engineering, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Wei-Jiang Gong
College of Sciences, Northeastern University, Shenyang, 110819 China
E-mail: [email protected]
Search for more papers by this authorDi Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorXue-Si Li
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorLian-Lian Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorTong-Tong Xu
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorHao Chu
Faculty of Robot Science and Engineering, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Wei-Jiang Gong
College of Sciences, Northeastern University, Shenyang, 110819 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Quantum transmission through a heterojunction formed by two types of nodal-line semimetals is investigated. Results show that the initial energy and energy range of the quantum transmission can be modulated efficiently when the barrier region demonstrates its different energy-band properties. Antiresonance points can also appear in the transmission function spectra. Moreover, if the barrier is parallel to the basal planes of the nodal-line semimetals, one gap appears in the transmission function spectrum instead of the normal antiresonance point. In addition, the Klein tunneling displays new characteristics in such a heterojunction. All these results provide useful information for adjusting the transmission behaviors in the heterojunctions of nodal-line semimetals.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1C. Fang, L. Lu, J. W. Liu, Nat. Phys. 2016, 12, 936.
- 2J. Y. Zou, Z. R. He, G. Xu, npj: Comput Mater. 2019, 5, 96.
- 3A. A. Burkov, Nat. Mater. 2016, 15, 1145.
- 4N. P. Armitage, E. J. Mele, A. Vishwanath, Rev. Mod. Phys. 2018, 90, 015001.
- 5Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, X. C. Xie, Phys. Rev. Lett. 2015, 115, 156602.
- 6Z. Hou, Q. F. Sun, Phys. Rev. B 2017, 96, 155305.
- 7A. A. Burkov, M. D. Hook, L. Balents, Phys. Rev. B 2011, 84, 235126.
- 8N. B. Kopnin, T. T. Heikkilä, G. E. Volovik, Phys. Rev. B 2011, 83, 220503(R).
- 9H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, Y. Kawazoe, Phys. Rev. B 2015, 92, 045108.
- 10C. Fang, Y. Chen, H. Y. Kee, L. Fu, Phys. Rev. B 2015, 92, 081201(R).
- 11Y. H. Chan, C. K. Chiu, M. Y. Chou, A. P. Schnyder, Phys. Rev. B 2016, 93, 205132.
- 12W. B. Rui, Y. X. Zhao, A. P. Schnyder, Phys. Rev. B 2018, 97, 161113(R).
- 13G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. K. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, M. Zahid Hasan, Nat. Commun. 2016, 7, 10556.
- 14L. M. Schoop, M. N. Ali, C. Straber, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, C. R. Ast, Nat. Commun. 2016, 7, 11696.
- 15J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhro, S. Tran, C. N. Lau, J. Wei, Z. Mao, Phys. Rev. Lett. 2016, 117, 016602.
- 16B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C. C. Liu, Y. Feng, S. Wu, Sanjoy K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T. C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao, I. Matsuda, Nat. Commun. 2017, 8, 1007.
- 17Y. Wu, L. L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Buéko, P. C. Canfield, A. Kaminski, Nat. Phys. 2016, 12, 667.
- 18X. B. Wang, X. M. Ma, E. Emmanouilidou, B. Shen, C.-H. Hsu, C. S. Zhou, Y. Zuo, R. R. Song, S.-Y. Xu, G. Wang, L. Huang, N. Ni, C. Liu, Phys. Rev. B 2017, 96, 161112(R).
- 19Z. Liu, R. Lou, P. Guo, Q. Wang, S. Sun, C. Li, S. Thirupathaiah, A. Fedorov, D. Shen, K. Liu, H. Lei, S. Wang, Phys. Rev. X 2018, 8, 031044.
- 20R. Lou, P. Guo, M. Li, Q. Wang, Z. Liu, S. Sun, C. Li, X. Wu, Z. Wang, Z. Sun, D. Shen, Y. Huang, K. Liu, Z. Y. Lu, H. Lei, H. Ding, S. Wang, npj: Quantum Mater. 2018, 3, 43.
- 21R. Yu, H. Weng, Z. Fang, X. Dai, X. Hu, Phys. Rev. Lett. 2015, 115, 036807.
- 22Y. Du, F. Tang, D. Wang, L. Sheng, E. j. Kan, C. G. Duan, S. Y. Savrasov, X. Wan, npj: Quantum Mater. 2017, 2, 3.
- 23S. Y. Yang, H. Yang, E. Derunova, S. S. P. Parkin, B. Yan, M. N. Ali, Adv. Phys.: X 2018, 3, 1414631.
- 24T. Bzdus̆ek, Q. Wu, A. Rüegg, M. Sigrist, A. A. Soluyanov, Nature (London) 2016, 538, 75.
- 25V. Jovic, R. J. Koch, S. K. Panda, H. Berger, P. Bugnon, A. Magrez, K. E. Smith, S. Biermann, C. Jozwiak, A. Bostwick, E. Rotenberg, S. Moser, Phys. Rev. B 2018, 98, 241101(R).
- 26J. W. Rhim, Y. B. Kim, Phys. Rev. B 2015, 92, 045126.
- 27S. Li, Z. M. Yu, Y. Liu, S. Guan, S. S. Wang, X. Zhang, Y. Yao, S. A. Yang, Phys. Rev. B 2017, 96, 081106(R).
- 28Y. Huh, E. G. Moon, Y. B. Kim, Phys. Rev. B 2016, 93, 035138.
- 29Z. Yan, P. W. Huang, Z. Wang, Phys. Rev. B 2016, 93, 085138.
- 30Y. Wang, R. M. Nandkishore, Phys. Rev. B 2017, 96, 115130.
- 31A. Martin-Ruiz, A. Cortijo, Phy. Rev. B 2018, 98, 155125.
- 32M. R. van Delft, S. Pezzini, T. Khouri, C. S. A. Müller, M. Breitkreiz, L. M. Schoop, A. Carrington, N. E. Hussey, S. Wiedmann, Phys. Rev. Lett. 2018, 121, 256602.
- 33L. An, X. Zhu, W. Gao, M. Wu, W. Ning, M. Tian, Phys. Rev. B 2019, 99, 045143.
- 34M. Novak, S. N. Zhang, F. Orbanić, N. Bilis̆kov, G. Eguchi, S. Paschen, A. Kimura, X. X. Wang, T. Osada, K. Uchida, M. Sato, Q. S. Wu, O. V. Yazyev, I. Kokanović, Phys. Rev. B 2019, 100, 085137.
- 35A. Laha, S. Malick, R. Singha, P. Mandal, P. Rambabu, V. Kanchana, Z. Hossain, Phys. Rev. B 2019, 99, 241102(R).
- 36J. H. Guan, Y. Y. Zhang, W. E. Lu, Y. Xia, S. S. Li, J. Phys.: Condens. Matter 2018, 30, 185402.
- 37D. A. Khokhlov, A. L. Rakhmanov, A. V. Rozhkov, Phys. Rev. B 2018, 97, 235418.
- 38C. Bai, Y. Yang, J. Phys.: Condense Matter 2020, 32, 185001.
- 39Q. Cheng, Z. Hou, Q. F. Sun, Phys. Rev. B 2020, 101, 094508.
- 40Y. Zhou, F. Xiong, W. P. Chen, J. An, Phys. Rev. B 2020, 101, 075125.
- 41N. X. Yang, Z. Hou, Q. F. Sun, Phys. Rev. B 2020, 101, 035418.
- 42J. T. Jiang, W. Z. Shao, C. Y. Xu, Appl. Phys. Lett. 2007, 90, 142907.
- 43S. Février, B. Beaudou, P. Viale, Opt. Express 2010, 18, 5142.
- 44Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang, D. R. Bowler, T. Miyazaki, L. Xiang, Y. Asai, G. Zhou, N. Tao, Nat. Mater. 2019, 18, 357.
- 45S. Datta, Electron Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK 1997.