Heterointerface Control and Epitaxial Growth of 3C-SiC on Si by Gas Source Molecular Beam Epitaxy
T. Fuyuki
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorT. Hatayama
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorH. Matsunami
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorT. Fuyuki
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorT. Hatayama
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorH. Matsunami
Department of Electronic Science and Engineering, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-01, Japan
Search for more papers by this authorAbstract
Heterointerface modification and epitaxial growth of 3C-SiC on Si by gas source molecular beam epitaxy (MBE) are surveyed. A Si surface was carbonized by the use of C2H2, thermal cracking of C3H8, and dimethylgermane (CH3)2GeH2 (DMGe) to chemically convert the surface region into single crystalline 3C-SiC prior to crystal growth. It was found that a Si surface can be carbonized reproducibly by the use of hydrocarbon radicals at a temperature as low as 750 °C. The initial stage of carbonization is discussed based on the time-resolved reflection high-energy electron diffraction analysis. Low-temperature heterointerface modification by DMGe is described. As an advanced epitaxial growth, atomic-level control in SiC crystal growth by gas source MBE is given. Crystallinity and surface morphology of low-temperature 3C-SiC homoepitaxy on a carbonized layer is presented.
References
- 1 H. Matsunami, S. Nishino, and H. Ono, IEEE Trans. Electron Devices 28, 1235 (1981).
- 2 S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett. 42, 460 (1983).
- 3 K. Shibahara, S. Nishino, and H. Matsunami, Jpn. J. Appl. Phys. 23, L862 (1984).
- 4 K. Shibahara, S. Nishino, and H. Matsunami, J. Cryst. Growth 78, 538 (1986).
- 5 K. Shibahara, S. Nishino, and H. Matsunami, Appl. Phys. Lett. 50, 1888 (1987).
- 6 S. Nishino, H. Suhara, H. Ono, and H. Matsunami, J. Appl. Phys. 61, 4889 (1987).
- 7 K. Shibahara, T. Takeuchi, S. Nishino, and H. Matsunami, Jpn. J. Appl. Phys. 28, 1341 (1989).
- 8 K. Shibahara, T. Saito, S. Nishino, and H. Matsunami, IEEE Electron Devices Lett. 7, 692 (1986).
- 9 K. Furukawa, A. Hatano, A. Uemoto, Y. Fujii, K. Nakanishi, M. Shigeta, A. Suzuki, and S. Nakajima, IEEE Electron Devices Lett. 8, 48 (1987).
- 10 T. Sugii, T. Ito, Y. Furumura, M. Doki, F. Mieno, and M. Maeda, J. Electrochem. Soc. 134, 2545 (1987).
- 11 M. Dayan, Surf. Sci. 149, L33 (1985).
- 12 M. Dayan, J. Vacuum Sci. Technol. A 4, 38 (1986).
- 13 R. Kaplan and T. M. Parril, Surf. Sci. 165, L45 (1986).
- 14 R. Kaplan, J. Vacuum Sci. Technol. A 6, 829 (1988).
- 15 R. Kaplan, Surf. Sci. 215, 111 (1989).
- 16 S. Hara, W. F. J. Slijkerman, J. F. van der Veen, I. Ohdomari, S. Misawa, E. Sakuma, and S. Yoshida, Surf. Sci. Lett. 231, L196 (1990).
- 17 T. Miyazawa, S. Yoshida, S. Misawa, S. Gonda, and I. Ohdomari, Appl. Phys. Lett. 45, 380 (1984).
- 18 H. Yamada, J. Appl. Phys. 65, 2084 (1989).
- 19 S. Motoyama, N. Morikawa, M. Nasu, and S. Kaneda, J. Appl. Phys. 68, 101 (1990).
- 20 T. Sugii, T. Aoyama, and T. Ito, J. Electrochem. Sci. 137, 989 (1990).
- 21 K. Kim, S. Choi, and K. L. Wang, J. Vacuum Sci. Technol. B 12, 930 (1992).
- 22 L. B. Rowland, S. Tanaka, R. S. Kern, and R. F. Davis, Proc. 4th Intern. Conf. Amorphous and Crystalline Silicon Carbide IV, Santa Clara 1992 (p. 84).
- 23 G. L. Zhou, Z. Ma, M. E. Lin, T. C. Shen, L. H. Allen, and H. Morkoc, J. Cryst. Growth 134, 167 (1993).
- 24 T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Cryst. Growth 95, 461 (1989).
- 25 T. Yoshinobu, N. Nakayama, H. Shiomi, T. Fuyuki, and H. Matsunami, J. Cryst. Growth 99, 520 (1990).
- 26 T. Yoshinobu, I. Izumikawa, H. Mitsui, T. Fuyuki, and H. Matsunami, Appl. Phys. Lett. 59, 2844 (1991).
- 27 T. Yoshinobu, H. Mitsui, I. Izumikawa, T. Fuyuki, and H. Matsunami, Appl. Phys. Lett. 60, 824 (1992).
- 28 S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 65, 2851 (1994).
- 29 T. Yoshinobu, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 30, L1086 (1991).
- 30 T. Yoshinobu, H. Mitsui, Y. Tarui, T. Fuyuki, and H. Matsunami, J. Appl. Phys. 72, 2006 (1992).
- 31 T. Yoshinobu, H. Mitsui, Y. Tarui, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 31, L1580 (1992).
- 32 T. Hatayama, Y. Tarui, T. Yoshinobu, T. Fuyuki, and H. Matsunami, J. Cryst. Growth 136, 333 (1994).
- 33 T. Fuyuki, Y. Tarui, T. Hatayama, and H. Matsunami, Mater. Res. Soc. Symp. Proc. 318, 201 (1994).
- 34 T. Hatayama, Y. Tarui, T. Fuyuki, and H. Matsunami, J. Cryst. Growth 150, 934 (1995).
- 35 M. Kitabatake, J. Appl. Phys. 74, 4438 (1993).
- 36 S. Hara, S. Misawa, S. Yoshida, and Y. Aoyagi, Phys. Rev. B 50, 4548 (1994).
- 37 M. Kitabatake and J. E. Greene, Jpn. J. Appl. Phys. 35, 5261 (1996).
- 38 M. Kitabatake and J. E. Greene, Appl. Phys. Lett. 69, 2048 (1996).
- 39 T. Hatayama, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 34, L1117 (1995).
- 40 H. Toyoda, H. Kojima, and H. Sugai, Appl. Phys. Lett. 54, 1507 (1989).
- 41 H. Toyoda, H. Kojima, and H. Sugai, Jpn. J. Appl. Phys. 30, 2912 (1991).
- 42 D. J. Hautman, R. J. Santoro, F. L. Dryer, and I. Glassman, Internat. J. Chem. Kinet. 13, 149 (1981).
- 43 V. Grill, G. Walder, D. Margreiter, T. Rauth, H. U. Poll, P. Scheier, and T. D. Märk, Z. Phys. D 25, 217 (1993).
- 44 T. Hatayama, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 35, 5255 (1996).
- 45 T. Yoshinobu, T. Fuyuki, and H. Matsunami, Jpn. J. Appl. Phys. 31, L1213 (1992).
- 46 C. C. Cheng, P. A. Taylor, R. M. Wallace, H. Gutleben, L. Clemen, M. L. Colaiann, P. L. Chen, W. H. Weinberg, W. J. Choyke, and J. T. Yates, Jr., Thin Solid Films 225, 196 (1993).
- 47 M. L. Colaianni, P. J. Chen, H. Gutleben, and J. T. Yates, Jr., Chem. Phys. Lett. 191, 561 (1992).
- 48 C. C. Cheng, S. R. Lucas, H. Gutleben, W. J. Choyke, and J. T. Yates, Jr., Surf. Sci. Lett. 273, L441 (1992).
- 49 T. Hatayama, N. Tanaka, T. Fuyuki, and H. Matsunami, Proc. 38th Electronic Materials Conf., Santa Barbara (California) 1996 (p. 20).
- 50 T. Hatayama, N. Tanaka, T. Fuyuki, and H. Matsunami, to be published in J. Electronic Mater. (1997).
- 51 H. Ishi, Y. Takahashi, and K. Fujinaga, JSAP-MRS Internat. Conf. Electronic Materials, Tokyo 1989 (p. 137).
- 52 H. Namba, T. Yamaguchi, and H. Kuroda, Appl. Surf. Sci. 79/80, 449 (1994).
- 53 T. Hatayama, N. Tanaka, T. Fuyuki, and H. Matsunami, Appl. Phys. Lett. 70, 1411 (1997).
- 54 J. M. Walls, Methods of Surface Analysis, Cambridge University Press, 1989.
- 55 H. Nagasawa and Y. Yamaguchi, Thin Solid Films 225, 230 (1993).
- 56 H. Nagasawa, K. Yagi, and T. Kawahara, Proc. 38th Electronic Materials Conf., Late News Paper, Santa Barbara (California) 1996 (J9).
- 57 T. Hatayama, T. Fuyuki, and H. Matsunami, in preparation.