Comparison shopping for a gradient-corrected density functional
Corresponding Author
John P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118Search for more papers by this authorKieron Burke
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
Search for more papers by this authorCorresponding Author
John P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118Search for more papers by this authorKieron Burke
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
Search for more papers by this authorAbstract
Gradient corrections to the local spin density (LSD) approximation for the exchange-correlation energy are making density functional theory as useful in quantum chemistry as it is in solid-state physics. But which of the many gradient-corrected density functionals should be preferred a priori? We make a graphical comparison of the gradient dependencies of some popular approximations, discussing the exact formal conditions which each obeys and identifying which conditions seem most important. For the exchange energy, there is little formal or practical reason to choose among the Perdew-Wang 86, Becke 88, or Perdew-Wang 91 functionals. But, for the correlation energy, the best formal properties are displayed by the nonempirical PW91 correlation functional. Furthermore, the real-space foundation of PW91 yields an insight into the character of the gradient expansion which suggests that PW91 should work especially well for solids. Indeed, while improving dissociation energies over LSD, PW91 remains the most “local” of the gradient-corrected exchange-correlation functionals and, thus, the least likely to overcorrect the subtle errors of LSD for solids. To show that our analysis of spin-unpolarized functionals is sufficient, we also compute spin-polarization energies for atoms, finding PW91 values only slightly more negative than LSD values. © 1996 John Wiley & Sons, Inc.
References
- 1 W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
- 2 R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).
- 3
R. M. Dreizler and
E. K. U. Gross,
Density Functional Theory
(Springer-Verlag, Berlin,
1990).
10.1007/978-3-642-86105-5 Google Scholar
- 4 R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
- 5 S. K. Ma and K. A. Brueckner, Phys. Rev. 165, 18 (1968).
- 6 D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983).
- 7 C. D. Hu and D. C. Langreth, Phys. Scr. 32, 391 (1985).
- 8 J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); Phys. Rev. Lett. 55, 2370 (1985).
- 9 J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986); Phys. Rev. B 40, 3399 (1989).
- 10 J. P. Perdew, Phys. Rev. B 33, 8822 (1986); Phys. Rev. B 34, 7406 (1986).
- 11 A. D. Becke, Phys. Rev. A 38, 3098 (1988).
- 12 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- 13 L. C. Wilson and M. Levy, Phys. Rev. B 41, 12930 (1990).
- 14 J. P. Perdew, Physica B 172, 1 (1991).
- 15 J. P. Perdew, in Electronic Structure of Solids '91, P. Ziesche and H. Eschrig, Eds. (Akademie Verlag, Berlin, 1991).
- 16 J. P. Perdew, K. Burke, and Y. Wang, unpublished.
- 17 P. Bagno, O. Jepsen, and O. Gunnarsson, Phys. Rev. B 40, 1997 (1989).
- 18 G. Ortiz and P. Ballone, Phys. Rev. B 43, 6376 (1991).
- 19 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Sigh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); Phys. Rev. B 48, 4978 (1993).
- 20 V. Ozolins and M. Körling, Phys. Rev. B 48, 18304 (1993).
- 21 P. Mlynarski and D. R. Salahub, J. Chem. Phys. 95, 6050 (1991).
- 22 A. D. Becke, J. Chem. Phys. 96, 2155 (1992).
- 23 A. D. Becke, J. Chem. Phys. 97, 9173 (1992).
- 24 J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).
- 25 F. W. Kutzler and G. S. Painter, Phys. Rev. B 45, 3236 (1992).
- 26 R. Merkle, A. Savin, and H. Preuss, Chem. Phys. Lett. 194, 32 (1992).
- 27 J. M. Seminario, Chem. Phys. Lett. 206, 547 (1993).
- 28 B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).
- 29 H. Chen, M. Krasowski, and G. Fitzgerald, J. Chem. Phys. 98, 8710 (1993).
- 30 C. W. Murray, N. C. Handy, and R. D. Amos, J. Chem. Phys. 98, 7145 (1993).
- 31 A. Stirling, I. Pápai, J. Mink, and D. R. Salahub, J. Chem. Phys. 100, 2910 (1994).
- 32 B. Hammer, K. W. Jacobsen, and J. K. Nørskov, Phys. Rev. Lett. 70, 3971 (1993).
- 33 C. Sosa and C. Lee, J. Chem. Phys. 98, 8004 (1993).
- 34 R. V. Stanton and K. M. Merz, J. Chem. Phys. 100, 434 (1994).
- 35 K. Laasonen, F. Csajka, and M. Parinello, Chem. Phys. Lett. 194, 172 (1992).
- 36 C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. Lett. 69, 462 (1992).
- 37 R. N. Barnett and U. Landman, Phys. Rev. Lett. 70, 1775 (1993).
- 38 J. M. Seminario, Int. Journal Quantum Chem. S 28, 655 (1994).
- 39 L. Fan, and T. Ziegler, J. Chem. Phys. 95, 7401 (1991).
- 40 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
- 41 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- 42 K. Burke, J. P. Perdew and M. Levy, in Modern Density Functional Theory: A Toolfor Chemistry, J. M. Seminario and P. Politzer, Eds. (Elsevier, Amsterdam, 1995).
- 43 M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).
- 44 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- 45 O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
- 46 D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).
- 47 J. Harris, Phys. Rev. A 29, 1648 (1984).
- 48 K. Burke, J. P. Perdew, and D. C. Langreth, Phys. Rev. Lett. 73, 1283 (1994).
- 49 M. Rasolt and H. L. Davis, Phys. Lett. A 86, 45 (1981).
- 50 M. Rasolt and D. J. W. Geldart, Phys. Rev. B 34, 1325 (1986).
- 51 L. Kleinman and S. Lee, Phys. Rev. B 37, 4634 (1988).
- 52 M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
- 53 M. Levy, Int. J. Quantum Chem. S23, 617 (1989).
- 54 M. Levy, Phys. Rev. A 43, 4637 (1991).
- 55 A. Görling and M. Levy, Phys. Rev. A 45, 1509 (1992).
- 56 A. Görling, M. Levy, and J. P. Perdew, Phys. Rev. B 47, 1167 (1993).
- 57 M. Levy, Bull. Am. Phys. Soc. 39, 671 (1994).
- 58 E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).
- 59 D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993).
- 60 E. Engel, J. A. Chevary, L. D. MacDonald, and S. H. Vosko, Z. Phys. D 23, 7 (1992).
- 61 J. P. Perdew, R. G. Parr, M. Levy and J. L. Balduz, Jr., Phys. Rev. Lett. 49, 1691 (1982).
- 62
J. P. Perdew,
in Density Functional Methods in Physics,
R. M. Dreizler and
J. da Providencia, Ed.
(Plenum, New York,
1985).
10.1007/978-1-4757-0818-9_10 Google Scholar
- 63 K. Aashamar, T. M. Luke, and J. D. Talman, Phys. Rev. A 19, 6 (1979).
- 64 V. Sahni, J. Gruenebaum, and J. P. Perdew, Phys. Rev. B 26, 4371 (1982).
- 65 J. B. Krieger, Y. Li, and G. J. Iafrate, in Density Functional Theory, R. Dreizler and E. K. U. Gross, Eds., NATO ASI Series (Plenum, New York, 1994).
- 66 S. H. Vosko and L. D. MacDonald, in Condensed Mutter Theories, P. Vashishta, R. K. Kalia, and R. F. Bishop, Eds. (Plenum, New York, 19871), Vol. 2.
- 67 R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
- 68 E. K. U. Gross and R. M. Dreizler, Z. Phys. A 302, 103 (1981).
- 69 K. Burke and J. P. Perdew, in Thirty Years of Density Functional Theory, 13-16 June, 1994, Cracow, Int. J. Quantum Chem., to appear.
- 70 E. Clementi and S. J. Chakravorty, J. Chem. Phys. 93, 2591 (1990).
- 71 P. Fuentealba and A. Savin, Chem. Phys. Lett. 217, 566 (1994).
- 72 M. Causá and A. Zupan, Chem. Phys. Lett. 220, 145 (1994).
- 73 N. Oliphant and R. J. Bartlett, J. Chem. Phys. 100, 6550 (1994).
- 74 D. C. Langreth and J. P. Perdew, Phys. Rev. B 21, 5469 (1980).
- 75 B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
- 76 C. Umrigar and X. Gonze, in High Performance Computing and Its Application to the Physical Sciences, D. A. Browne et al., Eds. (World Scientific, Singapore, 1993).
- 77 Y. Wang, J. P. Perdew, J. A. Chevary, L. D. MacDonald, and S. H. Vosko, Phys. Rev. A 41, 78 (1990).
- 78 A. D. Becke, Int. J. Quantum Chem. 23, 1915 (1983).
- 79 D. R. Murphy, Phys. Rev. A 24, 1682 (1981).
- 80 J. P. Perdew, Phys. Lett. A 165, 79 (1992).
- 81 M. Causà, R. Dovesi, and C. Roetti, Phys. Rev. B 43, 11937 (1991).
- 82 L. Mitáš and R. M. Martin, Phys. Rev. Lett. 72, 2438 (1994).
- 83 A. Garcia, C. Elsässer, J. Zhu, S. G. Louie, and M. L. Cohen, Phys. Rev. B 46, 9829 (1992); Phys. Rev. B, 47, 4130 (1993).
- 84 Y. M. Juan and E. Kaxiras, Phys. Rev. B 48, 14944 (1993).
- 85 N. A. W. Holzwarth and Y. Zeng, Phys. Rev. B 49, 2351 (1994).
- 86 C. Fiolhais, J. P. Perdew, S. Q. Armster, J. M. MacLaren, and M. Brajczewska, unpublished.
- 87 P. Dufek, P. Blaha, V. Sliwko, and K. Schwarz, Phys. Rev. B 49, 10170 (1994).
- 88 R. Ahuja, S. Auluck, P. Söderlind, O. Eriksson, J. M. Willi, and B. Johansson, Phys. Rev. B 50, 11, 183 (1994).