Mechanisms of COVID-19-associated olfactory dysfunction
Koping Chang
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Department and Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorThomas Zaikos
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorNicholas Kilner-Pontone
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorCorresponding Author
Cheng-Ying Ho
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Correspondence
Cheng-Ying Ho, MD, PhD, Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, M2101, Baltimore, MD 21287.
Email: [email protected]
Search for more papers by this authorKoping Chang
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Department and Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorThomas Zaikos
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorNicholas Kilner-Pontone
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Search for more papers by this authorCorresponding Author
Cheng-Ying Ho
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Correspondence
Cheng-Ying Ho, MD, PhD, Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, M2101, Baltimore, MD 21287.
Email: [email protected]
Search for more papers by this authorFunding information: C.-Y. Ho is supported by National Institute of Neurological Disorders and Stroke K08NS102468.
Abstract
Olfactory dysfunction is one of the most common symptoms of COVID-19. In the first 2 years of the pandemic, it was frequently reported, although its incidence has significantly decreased with the emergence of the Omicron variant, which has since become the dominant viral strain. Nevertheless, many patients continue to suffer from persistent dysosmia and dysgeusia, making COVID-19-associated olfactory dysfunction an ongoing health concern. The proposed pathogenic mechanisms of COVID-19-associated olfactory dysfunction are complex and likely multifactorial. While evidence suggests that infection of sustentacular cells and associated mucosal inflammation may be the culprit of acute, transient smell loss, alterations in other components of the olfactory system (e.g., olfactory receptor neuron dysfunction, olfactory bulb injury and alterations in the olfactory cortex) may lead to persistent, long-term olfactory dysfunction. This review aims to provide a comprehensive summary of the epidemiology, clinical manifestations and current understanding of the pathogenic mechanisms of COVID-19-associated olfactory dysfunction.
CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest to disclose.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1Carignan A, Valiquette L, Grenier C, et al. Anosmia and dysgeusia associated with SARS-CoV-2 infection: an age-matched case-control study. Cmaj. 2020; 192(26): E702-e7. doi:10.1503/cmaj.200869
- 2Noh JY, Yoon JG, Seong H, et al. Asymptomatic infection and atypical manifestations of COVID-19: comparison of viral shedding duration. J Infect. 2020; 81(5): 816-846. doi:10.1016/j.jinf.2020.05.035
- 3Spinato G, Fabbris C, Polesel J, et al. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. Jama. 2020; 323(20): 2089-2090. doi:10.1001/jama.2020.6771
- 4Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683-690. doi:10.1001/jamaneurol.2020.1127
- 5Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277(8): 2251-2261. doi:10.1007/s00405-020-05965-1
- 6Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020; 10(8): 944-950. doi:10.1002/alr.22587
- 7von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci. 2020; 11(19): 2944-2961. doi:10.1021/acschemneuro.0c00460
- 8Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID study. Lancet. 2022; 399(10335): 1618-1624. doi:10.1016/S0140-6736(22)00327-0
- 9Vihta KD, Pouwels KB, Peto TE, et al. Omicron-associated changes in SARS-CoV-2 symptoms in the United Kingdom. Clin Infect Dis. 2022; 76(3): e133-e141. doi:10.1093/cid/ciac613
- 10Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020; 288(3): 335-344. doi:10.1111/joim.13089
- 11Klopfenstein T, Kadiane-Oussou NJ, Toko L, et al. Features of anosmia in COVID-19. Med Mal Infect. 2020; 50(5): 436-439. doi:10.1016/j.medmal.2020.04.006
- 12Augustin M, Schommers P, Stecher M, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021; 6:100122. doi:10.1016/j.lanepe.2021.100122
- 13Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397(10270): 220-232. doi:10.1016/S0140-6736(20)32656-8
- 14Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022; 22(4): e102-e107. doi:10.1016/S1473-3099(21)00703-9
- 15Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708-1720. doi:10.1056/NEJMoa2002032
- 16Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. doi:10.1016/S0140-6736(20)30183-5
- 17Mazzatenta A, Neri G, D'Ardes D, et al. Smell and taste in severe CoViD-19: self-reported vs. testing. Front Med (Lausanne). 2020; 7:589409. doi:10.3389/fmed.2020.589409
- 18Cattaneo C, Pagliarini E, Mambrini SP, et al. Changes in smell and taste perception related to COVID-19 infection: a case-control study. Sci Rep. 2022; 12(1): 8192. doi:10.1038/s41598-022-11864-8
- 19Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182(4): 812-27.e19. doi:10.1016/j.cell.2020.06.043
- 20Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020; 95(8): e1060-e1070. doi:10.1212/WNL.0000000000009937
- 21Whitcroft KL, Hummel T. Olfactory dysfunction in COVID-19: diagnosis and management. Jama. 2020; 323(24): 2512-2514. doi:10.1001/jama.2020.8391
- 22Boscolo-Rizzo P, Tirelli G, Meloni P, et al. Coronavirus disease 2019 (COVID-19)-related smell and taste impairment with widespread diffusion of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) omicron variant. Int Forum Allergy Rhinol. 2022; 12(10): 1273-1281. doi:10.1002/alr.22995
- 23Cardoso CC, Rossi ÁD, Galliez RM, Faffe DS, Tanuri A, Castiñeiras T. Olfactory dysfunction in patients with mild COVID-19 during gamma, Delta, and omicron waves in Rio de Janeiro, Brazil. Jama. 2022; 328(6): 582-583. doi:10.1001/jama.2022.11006
- 24Coelho DH, Reiter ER, French E, Costanzo RM. Decreasing incidence of chemosensory changes by COVID-19 variant. Otolaryngol Head Neck Surg. 2022; 1945998221097656(4): 704-706. doi:10.1177/01945998221097656
10.1177/01945998221097656 Google Scholar
- 25von Bartheld CS, Wang L. Prevalence of olfactory dysfunction with the omicron variant of SARS-CoV-2: a systematic review and meta-analysis. Cell. 2023; 12.
- 26Hintschich CA, Vielsmeier V, Bohr C, Hagemann J, Klimek L. Prevalence of acute olfactory dysfunction differs between variants of SARS-CoV-2-results from chemosensitive testing in wild type, VOC alpha (B.1.1.7) and VOC delta (B.1617.2). Eur Arch Otorhinolaryngol. 2022; 279(11): 1-3. doi:10.1007/s00405-022-07431-6
- 27Klimek L, Hagemann J, Hummel T, et al. Olfactory dysfunction is more severe in wild-type SARS-CoV-2 infection than in the Delta variant (B.1.617.2). World Allergy Organ J. 2022; 15(6):100653. doi:10.1016/j.waojou.2022.100653
- 28Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin Infect Dis. 2020; 71(15): 889-890. doi:10.1093/cid/ciaa330
- 29Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis. Mayo Clin Proc. 2020; 95(8): 1621-1631. doi:10.1016/j.mayocp.2020.05.030
- 30Speth MM, Singer-Cornelius T, Oberle M, Gengler I, Brockmeier SJ, Sedaghat AR. Olfactory dysfunction and Sinonasal symptomatology in COVID-19: prevalence, severity, timing, and associated characteristics. Otolaryngol Head Neck Surg. 2020; 163(1): 114-120. doi:10.1177/0194599820929185
- 31Liang Y, Xu J, Chu M, et al. Neurosensory dysfunction: a diagnostic marker of early COVID-19. Int J Infect Dis. 2020; 98: 347-352. doi:10.1016/j.ijid.2020.06.086
- 32Sierpiński R, Pinkas J, Jankowski M, et al. Sex differences in the frequency of gastrointestinal symptoms and olfactory or taste disorders in 1942 nonhospitalized patients with coronavirus disease 2019 (COVID-19). Pol Arch Intern Med. 2020; 130: 501-505.
- 33Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, et al. Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study. Eur J Neurol. 2020; 27(9): 1738-1741. doi:10.1111/ene.14273
- 34Meini S, Suardi LR, Busoni M, Roberts AT, Fortini A. Olfactory and gustatory dysfunctions in 100 patients hospitalized for COVID-19: sex differences and recovery time in real-life. Eur Arch Otorhinolaryngol. 2020; 277(12): 3519-3523. doi:10.1007/s00405-020-06102-8
- 35Shelton JF, Shastri AJ, Fletez-Brant K, Aslibekyan S, Auton A. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat Genet. 2022; 54(2): 121-124. doi:10.1038/s41588-021-00986-w
- 36Heydel J, Leclerc S, Bernard P, et al. Rat olfactory bulb and epithelium UDP-glucuronosyltransferase 2A1 (UGT2A1) expression: in situ mRNA localization and quantitative analysis. Brain Res Mol Brain Res. 2001; 90(1): 83-92. doi:10.1016/S0169-328X(01)00080-8
- 37Neiers F, Jarriault D, Menetrier F, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS ONE. 2021; 16(3):e0249029. doi:10.1371/journal.pone.0249029
- 38Yang AC, Kern F, Losada PM, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021; 595(7868): 565-571. doi:10.1038/s41586-021-03710-0
- 39Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. Jama. 2020; 324(6): 603-605. doi:10.1001/jama.2020.12603
- 40Mandal S, Barnett J, Brill SE, et al. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021; 76(4): 396-398. doi:10.1136/thoraxjnl-2020-215818
- 41Whitaker M, Elliott J, Chadeau-Hyam M, et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat Commun. 2022; 13(1): 1957. doi:10.1038/s41467-022-29521-z
- 42Stefanou MI, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Adv Chronic Dis. 2022; 13:20406223221076890. doi:10.1177/20406223221076890
- 43Zhang X, Wang F, Shen Y, et al. Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw Open. 2021; 4(9):e2127403. doi:10.1001/jamanetworkopen.2021.27403
- 44Ercoli T, Masala C, Pinna I, et al. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol Sci. 2021; 42(12): 4921-4926. doi:10.1007/s10072-021-05611-6
- 45Ludwig S, Schell A, Berkemann M, et al. Post-COVID-19 impairment of the senses of smell, taste, hearing, and balance. Viruses. 2022; 14(5): 14. doi:10.3390/v14050849
10.3390/v14050849 Google Scholar
- 46Bauer L, Rissmann M, Benavides FFW, et al. In vitro and in vivo differences in neurovirulence between D614G, Delta and omicron BA.1 SARS-CoV-2 variants. Acta Neuropathol Commun. 2022; 10(1): 124. doi:10.1186/s40478-022-01426-4
- 47Calculli A, Bocci T, Porcino M, et al. Parkinson disease following COVID-19: report of six cases. Eur J Neurol. 2023; 30(5): 1272-1280. doi:10.1111/ene.15732
- 48Käufer C, Schreiber CS, Hartke AS, et al. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine. 2022; 79:103999. doi:10.1016/j.ebiom.2022.103999
- 49Bourgon C, Albin AS, Ando-Grard O, et al. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci. 2022; 79(12): 616. doi:10.1007/s00018-022-04643-1
- 50Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020; 89: 579-586. doi:10.1016/j.bbi.2020.06.032
- 51Chen M, Pekosz A, Villano JS, et al. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. bioRxiv. 2022.
- 52Campabadal A, Oltra J, Junqué C, et al. Structural brain changes in post-acute COVID-19 patients with persistent olfactory dysfunction. Ann Clin Transl Neurol. 2022; 10(2): 195-203. doi:10.1002/acn3.51710
- 53Frere JJ, Serafini RA, Pryce KD, et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci Transl Med. 2022;eabq3059.
- 54Meng B, Abdullahi A, IATM F, et al. Altered TMPRSS2 usage by SARS-CoV-2 omicron impacts infectivity and fusogenicity. Nature. 2022; 603: 706-714.
- 55Beckman D, Bonillas A, Diniz GB, et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022; 41(5):111573. doi:10.1016/j.celrep.2022.111573
- 56Finlay JB, Brann DH, Abi Hachem R, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med. 2022; 14(676):eadd0484. doi:10.1126/scitranslmed.add0484
- 57Khan M, Clijsters M, Choi S, et al. Anatomical barriers against SARS-CoV-2 neuroinvasion at vulnerable interfaces visualized in deceased COVID-19 patients. Neuron. 2022; 110(23): 3919-3935.e6. doi:10.1016/j.neuron.2022.11.007
- 58Schwabenland M, Salié H, Tanevski J, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021; 54(7): 1594-610.e11. doi:10.1016/j.immuni.2021.06.002
- 59Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021; 218(3). doi:10.1084/jem.20202135
- 60Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020; 383(10): 989-992. doi:10.1056/NEJMc2019373
- 61Wingrove J, Makaronidis J, Prados F, et al. Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study. EClinicalMedicine. 2023; 58:101883. doi:10.1016/j.eclinm.2023.101883
- 62Khan M, Yoo SJ, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021; 184(24): 5932-49.e15. doi:10.1016/j.cell.2021.10.027
- 63Kantonen J, Mahzabin S, Mäyränpää MI, et al. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol. 2020; 30(6): 1012-1016. doi:10.1111/bpa.12889
- 64Kishimoto-Urata M, Urata S, Kagoya R, et al. Prolonged and extended impacts of SARS-CoV-2 on the olfactory neurocircuit. Sci Rep. 2022; 12(1): 5728. doi:10.1038/s41598-022-09731-7
- 65Verma AK, Zheng J, Meyerholz DK, Perlman S. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight. 2022; 7(24). doi:10.1172/jci.insight.160277
- 66Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021; 24(2): 168-175. doi:10.1038/s41593-020-00758-5
- 67Wang PY, Boboila C, Chin M, et al. Transient and persistent representations of odor value in prefrontal cortex. Neuron. 2020; 108(1): 209-24.e6. doi:10.1016/j.neuron.2020.07.033
- 68Mediavilla C, Molina F, Puerto A. Bilateral lesions in the cerebellar interpositus-dentate region impair taste aversion learning in rats. Physiol Behav. 1998; 65(1): 25-33. doi:10.1016/S0031-9384(98)00083-3
- 69Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021; 95: 7-14. doi:10.1016/j.bbi.2020.12.031
- 70Pellegrini L, Albecka A, Mallery DL, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell. 2020; 27(6): 951-61.e5. doi:10.1016/j.stem.2020.10.001
- 71Schirinzi T, Lattanzi R, Maftei D, et al. Substance P and Prokineticin-2 are overexpressed in olfactory neurons and play differential roles in persons with persistent post-COVID-19 olfactory dysfunction. Brain Behav Immun. 2022; 108: 302-308. doi:10.1016/j.bbi.2022.12.017
- 72Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021; 384(5): 481-483. doi:10.1056/NEJMc2033369
- 73Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022; 185(14): 2452-68.e16. doi:10.1016/j.cell.2022.06.008
- 74Jiao L, Yang Y, Yu W, et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct Target Ther. 2021; 6(1): 169. doi:10.1038/s41392-021-00591-7
- 75Zhang L, Zhou L, Bao L, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021; 6(1): 337. doi:10.1038/s41392-021-00719-9
- 76Sun SH, Chen Q, Gu HJ, et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020; 28(1): 124-33.e4. doi:10.1016/j.chom.2020.05.020
- 77Urata S, Maruyama J, Kishimoto-Urata M, et al. Regeneration profiles of olfactory epithelium after SARS-CoV-2 infection in Golden Syrian hamsters. ACS Chem Nerosci. 2021; 12(4): 589-595. doi:10.1021/acschemneuro.0c00649
- 78Reiken S, Sittenfeld L, Dridi H, Liu Y, Liu X, Marks AR. Alzheimer's-like signaling in brains of COVID-19 patients. Alzheimers Dement. 2022; 18(5): 955-965. doi:10.1002/alz.12558
- 79de Melo GD, Lazarini F, Levallois S, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021; 13(596): 13. doi:10.1126/scitranslmed.abf8396
- 80Ye Q, Zhou J, He Q, et al. SARS-CoV-2 infection in the mouse olfactory system. Cell Discov. 2021; 7(1): 49. doi:10.1038/s41421-021-00290-1
- 81Zazhytska M, Kodra A, Hoagland DA, et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell. 2022; 185(6): 1052-64.e12. doi:10.1016/j.cell.2022.01.024
- 82Tsivgoulis G, Fragkou PC, Lachanis S, et al. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study. Eur J Neurol. 2021; 28(1): e6-e8. doi:10.1111/ene.14537
- 83Eliezer M, Hamel AL, Houdart E, et al. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology. 2020; 95(23): e3145-e3152. doi:10.1212/WNL.0000000000010806
- 84Niesen M, Trotta N, Noel A, et al. Structural and metabolic brain abnormalities in COVID-19 patients with sudden loss of smell. Eur J Nucl Med Mol Imaging. 2021; 48(6): 1890-1901. doi:10.1007/s00259-020-05154-6
- 85Chen CR, Kachramanoglou C, Li D, Andrews P, Choi D. Anatomy and cellular constituents of the human olfactory mucosa: a review. J Neurol Surg B Skull Base. 2014; 75(5): 293-300. doi:10.1055/s-0033-1361837
- 86Halpern BP. Retronasal olfaction☆. In reference module in neuroscience and biobehavioral psychology. Elsevier; 2017. doi:10.1016/B978-0-12-809324-5.02906-0
10.1016/B978?0?12?809324?5.02906?0 Google Scholar
- 87Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271-80.e8. doi:10.1016/j.cell.2020.02.052
- 88Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020; 56(3):2001948. doi:10.1183/13993003.01948-2020
- 89Hernandez-Clavijo A, Gonzalez-Velandia KY, Rangaswamy U, et al. Supporting cells of the human olfactory epithelium co-express the lipid scramblase TMEM16F and ACE2 and May cause smell loss by SARS-CoV-2 spike-induced syncytia. Cell Physiol Biochem. 2022; 56(3): 254-269. doi:10.33594/000000531
- 90Fodoulian L, Tuberosa J, Rossier D, et al. SARS-CoV-2 receptors and entry genes are expressed in the human olfactory Neuroepithelium and brain. iScience. 2020; 23(12):101839. doi:10.1016/j.isci.2020.101839
- 91Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370(6518): 856-860. doi:10.1126/science.abd2985
- 92Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370(6518): 861-865. doi:10.1126/science.abd3072
- 93Hassenklöver T, Kurtanska S, Bartoszek I, Junek S, Schild D, Manzini I. Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium. Glia. 2008; 56(15): 1614-1624. doi:10.1002/glia.20714
- 94Liang F. Sustentacular cell Enwrapment of olfactory receptor neuronal dendrites: an update. Genes (Basel). 2020; 11(5): 11. doi:10.3390/genes11050493
- 95Zhang AJ, Lee AC, Chu H, et al. Severe acute respiratory syndrome coronavirus 2 infects and damages the mature and immature olfactory sensory neurons of hamsters. Clin Infect Dis. 2021; 73(2): e503-e512. doi:10.1093/cid/ciaa995
- 96Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod Pathol. 2021; 34(8): 1456-1467. doi:10.1038/s41379-021-00793-y
- 97Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, et al. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia. ACS Chem Neurosci. 2020; 11(13): 1909-1913. doi:10.1021/acschemneuro.0c00249
- 98Sultan-Styne K, Toledo R, Walker C, Kallkopf A, Ribak CE, Guthrie KM. Long-term survival of olfactory sensory neurons after target depletion. J Comp Neurol. 2009; 515(6): 696-710. doi:10.1002/cne.22084
- 99Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014; 8: 182.
- 100Fletcher RB, Das D, Gadye L, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell. 2017; 20(6): 817-30.e8. doi:10.1016/j.stem.2017.04.003
- 101Nampoothiri S, Sauve F, Ternier G, et al. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. bioRxiv. 2020. 2020.06.08.139329.
- 102Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci. 2015; 9: 80. doi:10.3389/fncel.2015.00080
- 103Sauve F, Nampoothiri S, Clarke SA, et al. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine. 2023; 96:104784. doi:10.1016/j.ebiom.2023.104784
- 104Piras M, Cau F, Manchia M, et al. Strong ACE-2 expression in the choroidal vessels: do high choroid plexuses serve as a gateway for SARS-CoV-2 infection on the human brain? Eur Rev Med Pharmacol Sci. 2022; 26(8): 3025-3029. doi:10.26355/eurrev_202204_28633
- 105Price JL, Slotnick BM, Revial MF. Olfactory projections to the hypothalamus. J Comp Neurol. 1991; 306(3): 447-461. doi:10.1002/cne.903060309
- 106Murata K, Kinoshita T, Fukazawa Y, et al. GABAergic neurons in the olfactory cortex projecting to the lateral hypothalamus in mice. Sci Rep. 2019; 9(1): 7132. doi:10.1038/s41598-019-43580-1
- 107Gascuel J, Lemoine A, Rigault C, et al. Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice. Front Neuroanat. 2012; 6: 6. doi:10.3389/fnana.2012.00044
- 108Jacob F, Pather SR, Huang WK, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 Neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 2020; 27(6): 937-50.e9. doi:10.1016/j.stem.2020.09.016
- 109Fuchs V, Kutza M, Wischnewski S, et al. Presence of SARS-CoV-2 transcripts in the choroid plexus of MS and non-MS patients with COVID-19. Neurol Neuroimmunol Neuroinflamm. 2021; 8(2). doi:10.1212/NXI.0000000000000957
- 110Klironomos S, Tzortzakakis A, Kits A, et al. Nervous system involvement in coronavirus disease 2019: results from a retrospective consecutive neuroimaging cohort. Radiology. 2020; 297(3): E324-e34. doi:10.1148/radiol.2020202791
- 111Ammar A, Distinguin L, Chetrit A, et al. Transient modifications of the olfactory bulb on MR follow-up of COVID-19 patients with related olfactory dysfunction. J Neuroradiol. 2022; 49(4): 329-332. doi:10.1016/j.neurad.2022.03.003
- 112Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology. 2020; 95(14): e2016-e2027. doi:10.1212/WNL.0000000000010116
- 113Laurendon T, Radulesco T, Mugnier J, et al. Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology. 2020; 95(5): 224-225. doi:10.1212/WNL.0000000000009850
- 114Casez O, Willaume G, Grand S, et al. Teaching NeuroImages: SARS-CoV-2-related encephalitis: MRI pattern of olfactory tract involvement. Neurology. 2021; 96(4): e645-e646. doi:10.1212/WNL.0000000000011150
- 115Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020; 77(8): 1028-1029. doi:10.1001/jamaneurol.2020.2125
- 116Kandemirli SG, Altundag A, Yildirim D, Tekcan Sanli DE, Saatci O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol. 2021; 28(1): 28-35. doi:10.1016/j.acra.2020.10.006
- 117Ho CY, Salimian M, Hegert J, et al. Postmortem assessment of olfactory tissue degeneration and microvasculopathy in patients with COVID-19. JAMA Neurol. 2022; 79(6): 544-553. doi:10.1001/jamaneurol.2022.0154
- 118Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020; 5(1): 293. doi:10.1038/s41392-020-00454-7
- 119Ahamed J, Laurence J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches. J Clin Invest. 2022; 132(15). doi:10.1172/JCI161167
- 120Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P. Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis. 2011; 128(1): 18-23. doi:10.1016/j.anorl.2010.09.007
- 121Mobley AS, Rodriguez-Gil DJ, Imamura F, Greer CA. Aging in the olfactory system. Trends Neurosci. 2014; 37(2): 77-84. doi:10.1016/j.tins.2013.11.004
- 122Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022; 119:e2200960119.
- 123Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK biobank. Nature. 2022; 604(7907): 697-707. doi:10.1038/s41586-022-04569-5
- 124Sollini M, Morbelli S, Ciccarelli M, et al. Long COVID hallmarks on [18F]FDG-PET/CT: a case-control study. Eur J Nucl Med Mol Imaging. 2021; 48(10): 3187-3197. doi:10.1007/s00259-021-05294-3
- 125Donegani MI, Miceli A, Pardini M, et al. Brain metabolic correlates of persistent olfactory dysfunction after SARS-Cov2 infection. Biomedicine. 2021; 9(3): 9. doi:10.3390/biomedicines9030287
10.3390/biomedicines9030287 Google Scholar
- 126Esposito F, Cirillo M, De Micco R, et al. Olfactory loss and brain connectivity after COVID-19. Hum Brain Mapp. 2022; 43(5): 1548-1560. doi:10.1002/hbm.25741
- 127Sobel N, Prabhakaran V, Hartley CA, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998; 18(21): 8990-9001. doi:10.1523/JNEUROSCI.18-21-08990.1998
- 128Guedj E, Campion JY, Dudouet P, et al. (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021; 48(9): 2823-2833. doi:10.1007/s00259-021-05215-4
- 129Esposito F, Cirillo M, De Micco R, et al. Olfactory loss and brain connectivity after COVID-19: structural follow-up at one year. Neural Plast. 2023; 2023:6496539-6496535. doi:10.1155/2023/6496539
- 130Ferdon S, Murphy C. The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage. 2003; 20(1): 12-21. doi:10.1016/S1053-8119(03)00276-3
- 131Serrano GE, Walker JE, Tremblay C, et al. SARS-CoV-2 brain regional detection, histopathology, gene expression, and immunomodulatory changes in decedents with COVID-19. J Neuropathol Exp Neurol. 2022; 81(9): 666-695. doi:10.1093/jnen/nlac056
- 132Verde F, Milone I, Bulgarelli I, et al. Serum neurofilament light chain levels in Covid-19 patients without major neurological manifestations. J Neurol. 2022; 269(11): 5691-5701. doi:10.1007/s00415-022-11233-5
- 133Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022; 9(10): 815-827. doi:10.1016/S2215-0366(22)00260-7
- 134Cohen ME, Eichel R, Steiner-Birmanns B, et al. A case of probable Parkinson's disease after SARS-CoV-2 infection. Lancet Neurol. 2020; 19(10): 804-805. doi:10.1016/S1474-4422(20)30305-7
- 135Makhoul K, Jankovic J. Parkinson's disease after COVID-19. J Neurol Sci. 2021; 422:117331. doi:10.1016/j.jns.2021.117331
- 136Cavallieri F, Fioravanti V, Toschi G, et al. COVID-19 and Parkinson's disease: a casual association or a possible second hit in neurodegeneration? J Neurol. 2022; 269(1): 59-61. doi:10.1007/s00415-021-10694-4
- 137Armando F, Beythien G, Kaiser FK, et al. SARS-CoV-2 omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun. 2022; 13(1): 3519. doi:10.1038/s41467-022-31200-y
- 138Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol. 2022; 94(4): 1641-1649. doi:10.1002/jmv.27526
- 139Butowt R, Bilińska K, von Bartheld C. Why does the omicron variant largely spare olfactory function? Implications for the pathogenesis of anosmia in COVID-19. J Infect Dis. 2022; 226(8): 1304-1308. doi:10.1093/infdis/jiac113
- 140de Melo GD, Perraud V, Alvarez F, et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun. 2023; 14(1): 4485. doi:10.1038/s41467-023-40228-7
- 141Panzera Y, Ramos N, Frabasile S, et al. A deletion in SARS-CoV-2 ORF7 identified in COVID-19 outbreak in Uruguay. Transbound Emerg Dis. 2021; 68(6): 3075-3082. doi:10.1111/tbed.14002
- 142Mazur-Panasiuk N, Rabalski L, Gromowski T, et al. Expansion of a SARS-CoV-2 Delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to august 2021. Euro Surveill. 2021; 26(39). doi:10.2807/1560-7917.ES.2021.26.39.2100902
- 143Pyke AT, Nair N, van den Hurk AF, et al. Replication kinetics of B.1.351 and B.1.1.7 SARS-CoV-2 variants of concern including assessment of a B.1.1.7 mutant carrying a defective ORF7a gene. Viruses. 2021; 13(6): 13. doi:10.3390/v13061087
10.3390/v13061087 Google Scholar
- 144Chaaban N, Høier A, Andersen BV. A detailed characterisation of appetite, sensory perceptional, and eating-Behavioural effects of COVID-19: self-reports from the acute and post-acute phase of disease. Foods. 2021; 10(4): 10. doi:10.3390/foods10040892
- 145Boscolo-Rizzo P, Hummel T, Hopkins C, et al. Comprehensive chemosensory psychophysical evaluation of self-reported gustatory dysfunction in patients with Long-term COVID-19: a cross-sectional study. JAMA Otolaryngol Head Neck Surg. 2022; 148(3): 281-282. doi:10.1001/jamaoto.2021.3993
- 146Nguyen H, Albayay J, Höchenberger R, et al. Covid-19 affects taste independently of smell: results from a combined chemosensory home test and online survey from a global cohort (N=10,953). medRxiv. 2023.
- 147Witt M. Anatomy and development of the human taste system. Handb Clin Neurol. 2019; 164: 147-171. doi:10.1016/B978-0-444-63855-7.00010-1
- 148Doyle ME, Appleton A, Liu QR, Yao Q, Mazucanti CH, Egan JM. Human type II taste cells express angiotensin-converting enzyme 2 and are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Am J Pathol. 2021; 191(9): 1511-1519. doi:10.1016/j.ajpath.2021.05.010
- 149Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020; 19(11): 919-929. doi:10.1016/S1474-4422(20)30308-2
- 150Emmi A, Rizzo S, Barzon L, et al. Detection of SARS-CoV-2 viral proteins and genomic sequences in human brainstem nuclei. NPJ Parkinsons Dis. 2023; 9(1): 25. doi:10.1038/s41531-023-00467-3
- 151de Araujo IE, Simon SA. The gustatory cortex and multisensory integration. Int J Obes (Lond). 2009; 33(S2): S34-S43. doi:10.1038/ijo.2009.70
- 152Supple WF Jr, Leaton RN, Fanselow MS. Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol Behav. 1987; 39(5): 579-586. doi:10.1016/0031-9384(87)90156-9