Solar drying kinetics and bioactive compounds of blackberry (Rubus fruticosus)
Corresponding Author
Erick C. López-Vidaña
Facultad de Contaduría y Administración, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca de Juárez, Mexico
Instituto de Energías Renovables. Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
Correspondence
Erick C. López-Vidaña, Avenida Universidad s/n, Oaxaca, Mexico.
Email: [email protected]
Search for more papers by this authorIsaac Pilatowsky Figueroa
Instituto de Energías Renovables. Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
Search for more papers by this authorEmma G. Antonio Marcos
Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Delegación Coyoacán, Ciudad de México, Mexico
Search for more papers by this authorArturo Navarro-Ocaña
Laboratorio de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Search for more papers by this authorLiliana Hernández-Vázquez
Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Delegación Coyoacán, Ciudad de México, Mexico
Search for more papers by this authorJorge A. Santiago-Urbina
Dirección de División de Carrera de Agricultura Sustentable y Protegida, Universidad Tecnológica de los Valles Centrales de Oaxaca, Zimatlán, Oaxaca, Mexico
Search for more papers by this authorCorresponding Author
Erick C. López-Vidaña
Facultad de Contaduría y Administración, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca de Juárez, Mexico
Instituto de Energías Renovables. Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
Correspondence
Erick C. López-Vidaña, Avenida Universidad s/n, Oaxaca, Mexico.
Email: [email protected]
Search for more papers by this authorIsaac Pilatowsky Figueroa
Instituto de Energías Renovables. Universidad Nacional Autónoma de México, Temixco, Morelos, Mexico
Search for more papers by this authorEmma G. Antonio Marcos
Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Delegación Coyoacán, Ciudad de México, Mexico
Search for more papers by this authorArturo Navarro-Ocaña
Laboratorio de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Search for more papers by this authorLiliana Hernández-Vázquez
Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Delegación Coyoacán, Ciudad de México, Mexico
Search for more papers by this authorJorge A. Santiago-Urbina
Dirección de División de Carrera de Agricultura Sustentable y Protegida, Universidad Tecnológica de los Valles Centrales de Oaxaca, Zimatlán, Oaxaca, Mexico
Search for more papers by this authorAbstract
In this article, the effect of direct solar drying, indirect solar drying, and freeze drying on the phenolic compound contents and antioxidant capacities of blackberry fruits was investigated. The solar drying kinetics were determined and fitted to six thin layer different mathematical models. The total phenolic, anthocyanin, and flavonoid contents as well as the antioxidant capacity based on ABTS, DPPH, and OH• assays were determined for the dried blackberry samples. The results show that the Midilli–Kuçuk model provides the best fit to the experimental data of solar drying in both methods tested. Greater antioxidant capacities were observed in the samples dried by using direct solar drying method in all experiments, that is, the ABTS, DPPH, and OH• activities were 36,757 ± 1.27; 21.120 ± 1.33, and 47 ± 7.31 μmol TEAC/g dm, respectively. The creation of compounds during food dehydration at moderately high temperatures can enhance the antioxidant capacities and phenolic contents.
Practical applications
Rubus fruticosus is a berry with nutraceutical potential by the presence of bioactive compounds. The removal of water from a fruit extends the conservation time of the product during storage and transportation, facilitating the access to such foods when required. One of the most economical and sustainable ways to do the drying is to use solar dryers. Direct and indirect solar drying are technologies that have effects that must be taken into account according to the food that is to be dried and the final characteristics that are desired to obtain. However, the phenolic compounds present in the fruit are sensitive to the thermal process. Thus, it is important to know its consequences phenolic compounds and antioxidant activity for better use of the fruit.
REFERENCES
- Ah-Hen, K., Zambra, C. E., Aguëro, J. E., Vega-Gálvez, A., & Lemus-Mondaca, R. (2013). Moisture diffusivity coefficient and convective drying modelling of murta (Ugni molinae Turcz): Influence of temperature and vacuum on drying kinetics. Food and Bioprocess Technology, 6(4), 919–930.
- Akpinar, E. K. (2011). Drying of parsley leaves in a solar dryer and under open sun: Modeling, energy and exergy aspects. Journal of Food Process Engineering, 34(1), 27–48.
- Al-Saeedi, A. H., & Hossain, M. A. (2015). Total phenols, total flavonoids contents and free radical scavenging activity of seeds crude extracts of pigeon pea traditionally used in Oman for the treatment of several chronic diseases. Asian Pacific Journal of Tropical Disease, 5, 316–321.
- Antonio, E., Hernández-Vázquez, L., Oguín, E., Monroy, O., & Navarro-Ocaña, A. (2015). C-phycocyanin from Arthrospira maxima LJGR1: Production, extraction and protection. Journal of Advances in Biotechnology, 5(2), 659–666.
10.24297/jbt.v5i2.1574 Google Scholar
- An-Wei, C., Hong-Xia, X., Yan, Q., Chao, L., Xu, G., & Jin-Yue, S. (2017). Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry. LWT—Food Science and Technology, 78, 235–240.
- Arrieta-Baez, D., Dorantes-Alvarez, L., Martinez-Torres, R., Zepeda-Vallejo, G., Jaramillo-Flores, E., Ortiz-Moreno, A., & Aparicio-Ozores, G. (2012). Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: Dimerization and antioxidant activity. Journal of the Science of Food and Agriculture, 92, 2715–2720.
- Boughali, S., Benmoussa, H., Bouchekima, B., Mennouche, D., Bouguettaia, H., & Bechki, D. (2009). Crop drying by indirect active hybrid solar–electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy, 83, 2223–2232.
- Bowen-Forbes, C. S., Zhang, Y., & Nair, M. G. (2010). Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. Journal of Food Composition and Analysis, 23, 554–560.
- Castro, L. M., & Coelho Pinheiro, M. N. (2016). A simple data processing approach for drying kinetics experiments. Chemical Engineering Communications, 203, 258–269.
- Chang, S. K., Alasalvar, C., & Shahidi, F. (2016). Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. Journal of Functional Foods, 21, 113–132.
- Correia, A. F. K., Loro, A. C., Zanatta, S., Spoto, M. H. F., & Vieira, T. M. F. S. (2015). Effect of temperature, time, and material thickness on the dehydration process of tomato. International Journal of Food Science, 7.
- Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279.
- Elliott, A. J., Dhakal, A., Datta, N., & Deeth, H. C. (2003). Heat-induced changes in UHT milks—Part 1. Australian Journal of Dairy Technology, 58(1), 3–10.
- Fadhel, A., Kooli, S., Farhat, A., & Bellghith, A. (2005). Study of the solar drying of grapes by three different processes. Desalination, 185, 535–554.
- Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129, 345–350.
- Gaviria, C. A., Cifuentes, O. A., Monsalve, C. E., & Rojano, B. (2007). Actividad antioxidante de extractos metanólicos de Attalea butyracea. Scientia et Technica, 1, 297–298.
- Guimarães-Ferreira, A., Matias-Gonçalves, L., & Brasil Maia, C. (2014). Solar drying of a solid waste from steel wire industry. Applied Thermal Engineering, 73, 104–110.
- Gutteridge, J. M., & Halliwell, B. (2010). Antioxidants: Molecules, medicines, and myths. Biochemical and Biophysical Research Communications, 393, 561–564.
- Huang, W. Y., Zhang, H. C., Liu, W. X., & Li, C. Y. (2012). Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. Journal of Zhejiang University Science B, 13, 94–102.
- Hyeon-Jin, P., Yongjae, L., & Jong-Bang, E. (2016). Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying powder. Biocatalysis and Agricultural Biotechnology, 5, 193–198.
- Katsube, T., Tsurunaga, Y., Sugiyama, M., Furuno, T., & Yamasaki, Y. (2009). Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chemistry, 113, 964–969.
- Koca, I., & Karadeniz, B. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea region of Turkey. Scientia Horticulturae, 121, 447–450.
- Li, X., Wang, L., Wang, Y., & Xiong, Z. (2016). Effect of drying method on physicochemical properties and antioxidant activities of Hohenbuehelia serotina polysaccharides. Process Biochemistry, 51, 1100–1108.
- López-Vidaña, E. C., Pilatowsky Figueroa, I., Cortés, F. B., Rojano, B. A., & Navarro Ocaña, A. (2017). Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium meridionale Swartz). International Journal of Food Properties, 20(2), 294–305.
- Lutz, M., Hernández, J., & Henríquez, C. (2015). Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CyTA-Journal of Food, 13, 541–547.
- Matthaus, B. (2002). Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50, 3444–3452.
- Méndez-Lagunas, L., Rodríguez-Ramírez, J., Cruz-Gracida, M., Sandoval-Torres, S., & Barriada-Bernal, G. (2017). Convective drying kinetics of strawberry (Fragaria ananassa): Antioxidant activity, anthocyanins and total phenolic content. Food Chemistry, 230, 174–181.
- Piga, A., Del Caro, A., & Corda, G. (2003). From plums to prunes: Influence of drying parameters on polyphenols and antioxidant activity. Journal of Agricultural and Food Chemistry, 51, 3675–3681.
- Prencipe, F. P., Bruni, R., Guerrini, A., Rossi, D., Benvenuti, S., & Pellati, F. (2014). Metabolite profiling of polyphenols in Vaccinium berries and determination of their chemopreventive properties. Journal of Pharmaceutical and Biomedical Analysis, 89, 257–267.
- Radovanović, B. C., Anđelković, S. M., Radovanović, A. B., & Anđelković, M. Z. (2013). Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Tropical Journal of Pharmaceutical Research, 12, 813–819.
- Rodríguez, K., Ah-Hen, K. S., Vega-Gálvez, A., Vásquez, V., Quispe-Fuentes, I., Rojas, P., & Lemus-Mondaca, R. (2016). Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT—Food Science and Technology, 65, 537–542.
- Sacilik, K., Keskin, R., & Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73(3), 231–238.
- Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT—Food Science and Technology, 66, 484–489.
- Servicio de Información Agroalimentaria y Pesquera. SAGARPA. 2016. Detailed Tables. http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php. Accessed March 21, 2018.
- Stajčić, S. M., Tepić, A. N., Đilas, S. M., Šumić, Z. M., Čanadanović-Brunet, J. M., Ćetković, G. S., & Tumbas, V. T. (2012). Chemical composition and antioxidant activity of berry fruits. Acta Periodica Technologica, 43, 93–105.
10.2298/APT1243093S Google Scholar
- Tepe, B., Donmez, E., Unlu, M., Candan, F., Daferera, D., Vardar-Unlu, G., … Sokmen, A. (2004). Antimicrobial and antioxidantive activities of the essential oils and metanol extracts of Salvia Cryptantha (Montbret et Aucher ex Benth) and Salvia multicaulis (Vahl). Food Chemistry, 84, 519–525.
- Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816–823.
- Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., & Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132, 51–59.
- Vega-Gálvez, A., Lara, E., Flores, V., Di Scala, K., & Lemus-Mondaca, R. (2011). Effect of selected pretreatments on convective drying process of blueberries (var. O'neil). Food and Bioprocess Technology, 5(7), 2797–2804.
- Wrolstad, R. E. (2000). Anthocyanins. In F. J. Francis & G.-J. Lauro (Eds.), Natural food colorants (pp. 237–252). Boca Raton, FL: Marcel Dekker.
- Yuan, X., Gao, M., Xiao, H., Tan, C., & Du, Y. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chemistry, 133, 10–14.
- Zielinski, A. A. F., Goltz, C., Yamato, M. A. C., Ávila, S., Hirooka, E. Y., Wosiacki, G., … Demiate, I. M. (2015). Blackberry (Rubus spp.): Influence of ripening and processing on levels of phenolic compounds and antioxidant activity of the ‘Brazos’ and ‘Tupy’ varieties grown in Brazil. Ciência Rural, 45(4), 744–749.