Mechanistic elucidations of sesquiterpenes ameliorating viral infections: A review
Corresponding Author
Deepti Katiyar
Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Correspondence
Deepti Katiyar, Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India.
Email: [email protected]
Search for more papers by this authorPriya Bansal
Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorAbhishek Kumar
Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorSurya Prakash
Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorN. G. Raghavendra Rao
Department of Pharmaceutics, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorCorresponding Author
Deepti Katiyar
Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Correspondence
Deepti Katiyar, Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India.
Email: [email protected]
Search for more papers by this authorPriya Bansal
Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorAbhishek Kumar
Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorSurya Prakash
Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorN. G. Raghavendra Rao
Department of Pharmaceutics, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
Search for more papers by this authorAbstract
Sesquiterpenes are important in human health because they can treat viral infection, cardiovascular disease, and cancer. Sesquiterpenes have also been shown to increase the sensitivity of tumor cells to conventional pharmacological therapies, in addition to their antiviral effects. The present review article was drafted with an intention to gather information regarding sesquiterpenes and its medicinal importance. The role of sesquiterpenes in the endogenous production of sesquiterpenes by plants and fungi, as well as the mechanisms by which they are effective against viral infection, are discussed in this review. Different online libraries such as PUBMED, Sciencedirect, MEDLINE were assessed to gather information, additionally, books, magzagines, journals, and scientific newspapaers were also studied to make this article more informative. This review examines novel synthesis mechanisms, their cyclization, purification techniques, and the diverse ecological roles sesquiterpenes play in the plant producer, which varies according to the plant and the chemical under consideration. In this article, we have discussed the consequences of sesquiterpenes and their properties for future crop productivity. We have addressed the many forms of sesquiterpenes that have been shown to have antiviral activity in various diseases. The consequences of sesquiterpenes and their properties are very useful for future crop productivity. We have addressed the many forms of sesquiterpenes that have been shown to have antiviral activity in the treatment of various diseases.
Practical applications
Novel synthesis mechanisms, their cyclization, purification techniques, and the diverse ecological roles of sesquiterpenes will be very helfpul in drug development process. Sesquiterpene lactones are shown in this review to have qualities that warrant further scientific investigation in order to stimulate preclinical and clinical trials leading to the creation of novel medications. For antiviral drug development, the sesquiterpenes are a good prospective lead molecule because they can suppress viral replication by disrupting vRNA production and viral protein production.
CONFLICT OF INTEREST
No any conflicting contents are present in this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in NA at https://scholar.google.com/.
REFERENCES
- Abu-Izneid, T., Rauf, A., Shariati, M. A., Khalil, A. A., Imran, M., Rebezov, M., Uddin, M. S., Mahomoodally, M. F., & Rengasamy, K. R. R. (2020). Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacological Research, 161, 105165. https://doi.org/10.1016/j.phrs.2020.105165
- Abyari, M. (2016). Enhanced accumulation of Scopoletin in cell suspension culture of Spilanthes acmella Murr. Using precursor feeding. Brazilian Archives of Biology and Technology, 59, e16150533. https://doi.org/10.3390/ijms21249547
- Adeyemi, A. D., Oluigbo, C. C., Esan, A. O., Bello, M. O., Oladoye, S. O., Emmanuel, C. P., & Effiong, E. (2022). Chemical composition and antimicrobial activity of the essential oils of 14 known ficus species – A concise review. Biointerface Research in Applied Chemistry, 12(6), 8003–8034. https://doi.org/10.33263/BRIAC126.80038034
- Al-Taweel, S. P. (2018). Introductory chapter: Terpenes and terpenoids. IntechOpen.
- Amaral, P. F., Rocha-Leão, M. H., & Coelho, M. A. (2010). Bioconversion of flavors. In Handbook of fruit and vegetable flavors (pp. 115–128). John Wiley & Sons.
10.1002/9780470622834.ch8 Google Scholar
- Ansari, M. A., Badrealam, K. F., Alam, A., Tufail, S., Khalique, G., Equbal, M. J., Alzohairy, M. A., Almatroudi, A., Alomary, M. N., & Pottoo, F. H. (2020). Recent Nano-based therapeutic intervention of bioactive sesquiterpenes: Prospects in cancer therapeutics. Current Pharmaceutical Design, 26(11), 1138–1144. https://doi.org/10.2174/1381612826666200116151522
- Astani, A., Reichling, J., & Schnitzler, P. (2011). Screening for antiviral activities of isolated compounds from essential oils. Evidence-Based Complementary and Alternative Medicine, 2011, 253643. https://doi.org/10.1093/ecam/nep187
- Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
- Banerjee, A., & Pita-Boente, M. (2010). Synthetic approaches to glutinosone. Recueil des Travaux Chimiques des Pays-Bas, 108, 408–412. https://doi.org/10.1002/recl.19891081104
10.1002/recl.19891081104 Google Scholar
- Bartikova, H., Hanusova, V., Skalova, L., Ambroz, M., & Bousova, I. (2014). Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Current Topics in Medicinal Chemistry, 14(22), 2478–2494.
- Brand, Y., Roa Linares, V., Betancur, L., Durán-García, D., & Stashenko, E. (2015). Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils and monoterpenes on human herpes viruses. Journal of Essential Oil Research, 28, 1–8. https://doi.org/10.1080/10412905.2015.1093556
10.1080/10412905.2015.1093556 Google Scholar
- Burden, R. S., Bailey, J. A., & Vincent, G. G. (1975). Glutinosone, a new antifungal sesquiterpene from Nicotiana glutinosa infected with tobacco mosaic virus. Phytochemistry, 14(1), 221–223. https://doi.org/10.1016/0031-9422(75)85043-6
- Calva, J., Bec, N., Gilardoni, G., Larroque, C., Cartuche, L., Bicchi, C., & Montesinos, J. (2017). Acorenone B: AChE and BChE inhibitor as a major compound of the essential oil distilled from the Ecuadorian species Niphogeton dissecta (Benth.) J.F. Macbr. Pharmaceuticals, 10(4), 84. https://doi.org/10.3390/ph10040084
10.3390/ph10040084 Google Scholar
- Chadwick, M., Trewin, H., Gawthrop, F., & Wagstaff, C. (2013). Sesquiterpenoids lactones: Benefits to plants and people. International Journal of Molecular Sciences, 14(6), 12780–12805. https://doi.org/10.3390/ijms140612780
- Chakrapani, K. V., Kumar, P., & Rani, A. R. (2013). Phytochemical, pharmacological importance of patchouli. International Journal of Pharmaceutical Sciences Review and Research, 21(2), 7–15.
- Chen, D. L., Li, X., & Zhou, X. J. (2020). Research progress on sesquiterpenes and its pharmacological activities in genus Carpesium. Zhongguo Zhong Yao Za Zhi, 45(1), 37–51. https://doi.org/10.19540/j.cnki.cjcmm.20190929.201
- Chen, X. (2015). Germacrone, a major component of the essential oils extracted from Rhizoma curcuma, inhibits early stages of influenza virus replication. Phytochemistry & Natural Products, 3(6), 6836.
- Chen, Y., Dong, Y., Jiao, Y., Hou, L., Shi, Y., Gu, T., Zhou, P., Shi, Z., Xu, L., & Wang, C. (2015). In vitro antiviral activity of germacrone against porcine parvovirus. Archives of Virology, 160, 1415–1420. https://doi.org/10.1007/s00705-015-2393-3
- Chen, Y. H., Guo, D. S., Lu, M. H., Yue, J. Y., Liu, Y., & Shang, C. M. (2019). Inhibitory effect of Osthole from Cnidium monnieri on tobacco mosaic virus (TMV) infection in Nicotiana glutinosa. Molecules, 25(1), 65. https://doi.org/10.3390/molecules25010065
- Cheng, Y., Mai, J. Y., Hou, T. L., Ping, J., & Chen, J. J. (2016). Antiviral activities of atractylon from Atractylodis rhizoma. Molecular Medicine Reports, 14(4), 3704–3710. https://doi.org/10.3892/mmr.2016.5713
- Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., Jackson, B. G., & Baldy, V. (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104(6), 1527–1541. https://doi.org/10.1111/1365-2745.12644
- Chopra, B., & Dhingra, A. K. (2021). Natural products: A lead for drug discovery and development. Phytotherapy Research, 35(9), 4660–4702. https://doi.org/10.1002/ptr.7099
- Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and medicinal uses of terpenes. In N. Joshee, S. A. Dhekney, & P. Parajuli (Eds.), Medicinal plants (pp. 333–359). Springer, Cham.
10.1007/978-3-030-31269-5_15 Google Scholar
- da Silva, J. K., Figueiredo, P. L., Byler, K. G., & Setzer, W. N. (2020). Essential oils as antiviral agents. Potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. International Journal of Molecular Science, 21(10), 3426. https://doi.org/10.3390/ijms21103426
- da Silveira e Sá Rde, C., Andrade, L. N., & de Sousa, D. P. (2015). Sesquiterpenes from essential oils and anti-inflammatory activity. Natural Product Communications, 10(10), 1767–1774. https://doi.org/10.1177/1934578X1501001033
- Denyer, C. V., Jackson, P., Loakes, D. M., Ellis, M. R., & David, A. B. (1994). Isolation of Antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Young Journal of Natural Products, 57(5), 658–662. https://doi.org/10.1021/np50107a017
- Denyer, C. V., Jackson, P., Loakes, D. M., Ellis, M. R., & Young, D. A. B. (1994). Isolation of Antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products, 57(5), 658–662. https://doi.org/10.1021/np50107a017
- Duan, H., Takaishi, Y., Imakura, Y., Jia, Y., Li, D., Cosentino, L. M., & Lee, K. H. (2000). Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii: A new class of potent anti-HIV agents. Journal Natural Products, 63, 357–361. https://doi.org/10.1021/np990281s
- Ebrahimi, M., Farhadian, N., Amiri, A. R., Hataminia, F., Soflaei, S. S., & Karimi, M. (2022). Evaluating the efficacy of extracted squalene from seed oil in the form of microemulsion for the treatment of COVID-19: A clinical study. Journal of Medical Virology, 94(1), 119–130.
- El-Seedi, H., Ghia, F., & Torssell, K. B. G. (1994). Cadinane sesquiterpenes from Siparuna macrotepala. Phytochemistry, 35(6), 1495–1497. https://doi.org/10.1016/S0031-9422(00)86883-1
- Farmanpour-Kalalagh, K., Beyraghdar Kashkooli, A., Babaei, A., Rezaei, A., & van der Krol, A. R. (2022). Artemisinins in combating viral infections like SARS-CoV-2, inflammation and cancers and options to meet increased global demand. Frontiers in Plant Science, 13, 1–22. https://doi.org/10.3389/fpls.2022.780257
- Foroozesh, M., Sridhar, J., Goyal, N., & Liu, J. (2019). Coumarins and P450s, studies Reportedto- date. Molecules, 24(8), 1620. https://doi.org/10.3390/molecules24081620
- Fraatz, M., Berger, R., & Zorn, H. (2009). Nootkatone – A biotechnological challenge. Applied Microbiology and Biotechnology, 83, 35–41. https://doi.org/10.1007/s00253-009-1968-x
- Gao, J., Wu, W., Zhang, J., & Konishi, Y. (2007). The dihydro- b -agarofuran sesquiterpenoids. Natural Products Reports, 24, 1153–1189. https://doi.org/10.1039/B601473A
- Gliszczyńska, A., & Brodelius, P. E. (2012). Sesquiterpene coumarins. Phytochemistry Reviews, 11(1), 77–96. https://doi.org/10.1007/s11101-011-9220-6
- Goel, R., Singh, V., Rajkumari, Gupta, A. K., Mallavarapu, G. R., & Kumar, S. (2018). Constituents of the essential oil of Artemisia annua variety Sanjeevani compared with those of its parental varieties Arogya and Jeevanraksha: Selection for high artemisinin content co-selected high sesquiterpene content in essential oil. Journal of Essential Oil Bearing Plants, 21(5), 1336–1348.
- Goel, R. I., Singh, V. I., Kumari, R., Kumari, R. E., Srivastava, S. U., Mallavarapu, G. R., Goel, D. I., & Kumar, S. U. (2019). Artemisia (Asteraceae) essential oils: Compositional variation and mechanisms of its origin, biosynthesis of constituents, correspondence between biological activities and ethnomedicinal usage and repurposement prospects. Proceedings of the Indian National Science Academy, 4, 723–790. https://doi.org/10.16943/ptinsa/2019/49644
10.16943/ptinsa/2019/49644 Google Scholar
- Harris, H. M., & Hill, C. (2021). A place for viruses on the tree of life. Frontiers in Microbiology, 11, 604048. https://doi.org/10.3389/fmicb.2020.604048
- Hashimoto, T., Noma, Y., Kato, S., Tanaka, M., Takaoka, S., & Asakawa, Y. (1999). Biotransformation of hinesol isolated from the crude drug Atractylodes lancea by aspergillus Niger and aspergillus cellulosae. Chemical and Pharmaceutical Bulletin, 47, 716–717.
- Hassan, M. Z., Osman, H., Ali, M. A., & Ahsan, M. J. (2016). Therapeutic potential of coumarins as antiviral agents. European Journal of Medicinal Chemistry, 123, 236–255. https://doi.org/10.1016/j.ejmech.2016.07.056
- Hayashi, K., Hayashi, T., Ujita, K., & Takaishi, Y. (1996). Characterization of antiviral activity of a sesquiterpene, triptofordin C-2. The Journal of Antimicrobial Chemotherapy, 37(4), 759–768. https://doi.org/10.1093/jac/37.4.759
- He, F., Nugroho, A. E., Wong, C. P., Hirasawa, Y., Shirota, O., Morita, H., & Aisa, H. A. (2012). Rupestines F-M, new guaipyridine sesquiterpene alkaloids from Artemisia rupestris. Chemical and Pharmaceutical Bulletin, 60(2), 213–218. https://doi.org/10.1248/cpb.60.213
- He, W., Zhai, X., Su, J., Ye, R., Zheng, Y., & Su, S. (2019). Antiviral activity of Germacrone against pseudorabies virus in vitro. Pathogens, 8(4), 258. https://doi.org/10.3390/pathogens8040258
- Hu, G., Peng, C., Xie, X., Zhang, S., & Cao, X. (2017). Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol. Evidence-based Complementary and Alternative Medicine, 2017, 4850612. https://doi.org/10.1155/2017/4850612
- Hussien, T. A., Mohamed, T. A., Elshamy, A. I., Moustafa, M. F., El-Seedi, H. R., Pare, P. W., & Hegazy, M. E. F. (2021). Guaianolide Sesquiterpene Lactones from Centaurothamnus maximus. Molecules, 26, 2055. https://doi.org/10.3390/molecules26072055
- Hwang, D. R., Wu, Y. S., Chang, C. W., Lien, T., Chen, W. C., & Tan, U. K. (2006). Synthesis and antiviral activity of a series of sesquiterpene lactones and analogues in the subgenomic HCV replicon system. Bioorganic and Medicinal Chemistry, 14, 83–91. https://doi.org/10.1016/j.bmc.2005.07.055
- Ibrahim, N. A., El-Hawary, S. S., Mohammed, M. M., Farid, M. A., AbdelWahed, N. A., Ali, M. A., & El-Abd, E. A. (2015). Chemical composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of Fortunella margarita, lour. swingle, growing in Egypt. Journal of Applied Pharmaceutical Science, 5(1), 6–12. https://doi.org/10.7324/JAPS.2015.50102
10.7324/JAPS.2015.50102 Google Scholar
- Inoue, M. (2019). Role of medicinal and aromatic plants: Past, present, and future. In Pharmacognosy: Medicinal plants, In: S Hayashi, editor. IntechOpen (Ch. 2, pp. 1-13).
10.5772/intechopen.82497 Google Scholar
- Ivanescu, B., Miron, A., & Corciova, A. (2015). Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. Journal of Analytical Methods in Chemistry, 2015, 247685. https://doi.org/10.1155/2015/247685
- Jennings, M. R., & Parks, R. J. (2020). Curcumin as an antiviral agent. Viruses, 12(11), 1242. https://doi.org/10.3390/v12111242
- Kalló, G., Kunkli, B., Győri, Z., Szilvássy, Z., Csősz, É., & Tőzsér, J. (2020). Compounds with antiviral, anti-inflammatory and anticancer activity identified in wine from Hungary's Tokaj region via high resolution mass spectrometry and bioinformatics analyses. International Journal of Molecular Sciences, 21(24), 1–20. https://doi.org/10.3390/ijms21249547
10.3390/ijms21249547 Google Scholar
- Karadeniz, F., Oh, J. H., & Kong, C. (2021). Sesquiterpene lactones: A review of biological activities. Journal of Life Science., 31(4), 430–441. https://doi.org/10.5352/JLS.2021.31.4.430
10.5352/JLS.2021.31.4.430 Google Scholar
- Kim, S. R., Park, E. J., Dusabimana, T., Je, J., Jeong, K., Yun, S. P., Kim, H. J., Cho, K. M., Kim, H., & Park, S. W. (2020). Platycodon grandiflorus fermented extracts attenuate endotoxin-induced acute liver injury in mice. Nutrients, 12(9), 2802. https://doi.org/10.3390/nu12092802
- Koparde, A.A. (2019). Natural products in drug discovery. In: RC Doijad, editor. Intech Open. Ch. 14. Pharmacognosy: Medicinal plants.
10.5772/intechopen.82860 Google Scholar
- Kshirsagar, S. G., & Rao, R. V. (2021). Antiviral and immunomodulation effects of Artemisia. Medicina, 57, 217. https://doi.org/10.3390/medicina57030217
- Küpeli, A. E., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E., & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12(7), 1959. https://doi.org/10.3390/cancers12071959
- Lahlou, M. (2013). The success of natural products in drug discovery. Pharmacology & Pharmacy, 4(3), 17–31.
10.4236/pp.2013.43A003 Google Scholar
- Lautié, E., Russo, O., Ducrot, P., & Boutin, J. A. (2020). Unraveling plant natural chemical diversity for drug discovery purposes. Frontiers in Pharmacology, 11, 397. https://doi.org/10.3389/fphar.2020.00397
- Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes, 6(13), 1246–1258. https://doi.org/10.4239/wjd.v6.i13.1246
- Li, R., Liu, T., Liu, M., Chen, F., Liu, S., & Yang, J. (2017). Anti-influenza a virus activity of Dendrobine and its mechanism of action. Journal of Agricultural and Food Chemistry, 65(18), 3665–3674. https://doi.org/10.1021/acs.jafc.7b00276
- Li, Z., Howell, K., Fang, Z., & Zhang, P. (2020). Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Comprehensive Reviews in Food Science and Food Safety, 19(1), 247–281. https://doi.org/10.1111/1541-4337.12516
- Liu, J. F., Wang, L., Wang, Y. F., Song, X., Yang, L. J., & Zhang, Y. B. (2015). Sesquiterpenes from the fruits of illicium jiadifengpi and their anti-hepatitis B virus activities. Fitoterapia, 104, 41–44. https://doi.org/10.1016/j.fitote.2015.05.004
- Lv, C., Zheng, Z. L., Miao, F., Geng, H. L., Zhou, L., & Liu, L. P. (2014). New dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana wall: Isolation, identification and cytotoxicity against cancer cells. International Journal of Molecular Sciences., 15, 11111–11125. https://doi.org/10.3390/ijms150611111
- Masuda, Y., Kadokura, T., Ishii, M., Kimihiko, T., & Kitajima, J. (2015). Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells. Journal of Natural Medicines, 69, 332–339. https://doi.org/10.1007/s11418-015-0897-5
- Mathew, D., & Hsu, W. L. (2018). Antiviral potential of curcumin. Journal of Functional Foods, 40, 699. https://doi.org/10.1016/j.jff.2017.12.017
- Maurya, A., Mohan, S., & Verma, S. C. (2021). Antidiabetic potential of naturally occurring sesquiterpenes: A review. Current Topics in Medicinal Chemistry, 21(10), 851–862. https://doi.org/10.2174/1568026621666210305102500
- Meng, X., Liu, H., Xu, W., Zhang, W., Wang, Z., & Liu, W. (2020). Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microbial Cell Factories, 19, 21. https://doi.org/10.1186/s12934-020-1295-6
- Mishra, S., Pandey, A., & Manvati, S. (2020). Coumarin: An emerging antiviral agent. Heliyon, 6(1), e03217. https://doi.org/10.1016/j.heliyon.2020.e03217
- Moujir, L., Callies, O., Sousa, P. M. C., Sharopov, F., & Seca, A. M. L. (2020). Applications of sesquiterpene lactones: A review of some potential success cases. Applied Sciences, 10, 1–32. https://doi.org/10.3390/app10093001
10.3390/app10093001 Google Scholar
- Nadjib Boukhatem, M., & Mohamed Nadjib, B. (2020). Effective antiviral activity of essential oils and their characteristic terpenes against coronaviruses: An update. Journal of Pharmacology and Clinical Toxicology, 8(1), 1138.
- Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
- Nogueira Sobrinho, A. C., de Morais, S. M., Marinho, M. M., de Souza, N. V., & Lima, D. M. (2021). Antiviral activity on the zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Industrial Crops and Products, 162, 113281. https://doi.org/10.1016/j.indcrop.2021.113281
- Özçelik, B., Gürbüz, I., Karaoglu, T., & Yeşilada, E. (2009). Antiviral and antimicrobial activities of three sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Microbiological Research, 164(5), 545–552. https://doi.org/10.1016/j.micres.2007.05.006
- Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., & Tang, M. K. (2013). New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evidence-Based Complement Alternative Medicine, 25, 627375. https://doi.org/10.1155/2013/627375
- Park, S., Kim, N., Park, J. H., Lee, S. W., Song, J. H., Ko, H. J., Chae, H. J., Kim, H. R., & Kim, S. H. (2019). Simultaneous determination of seven sesquiterpene lactone glucosides in Ixeris dentata by high-performance liquid chromatography coupled with tandem mass spectrometry and their antiviral activities. Acta Chromatographica, 31(4), 280–285. https://doi.org/10.1556/1326.2018.00470
- Pascutti, M. F., Erkelens, M. N., & Nolte, M. A. (2016). Impact of viral infections on hematopoiesis: From beneficial to detrimental effects on bone marrow output. Frontiers in Immunology, 16(7), 364. https://doi.org/10.3389/fimmu.2016.00364
- Pusztai, R., Hohmann, J., Rédei, D., Engi, H., & Molnár, J. (2008). Inhibition of human cytomegalovirus IE gene expression by dihydro-beta-agarofuran sesquiterpenes isolated from euonymus species. In Vivo, 22(6), 787–792.
- Ren, Y., Yu, J., & Kinghorn, A. D. (2016). Development of anticancer agents from plant-derived sesquiterpene lactones. Current Medicinal Chemistry, 23(23), 2397–2420.
- Rong, H., ShanZhai, S., Wei, Z., YongKuan, C., GuangYu, Y., & ZhiHua, L. (2015). A new eremophilane-type sesquiterpene from flue-cured tobacco and its anti-tobacco mosaic virus activity. Asian Journal of Chemistry, 27(5), 1947–1948.
10.14233/ajchem.2015.17381 Google Scholar
- Serra, S. (2015). Enzyme-mediated synthesis of sesquiterpenes. Natural Products Communications, 10(1), 157–166.
- Shao, Y. Z., Li, Y. T., Gong, T., Zhu, P., & Yu, S. S. (2021). Research advances in methods of cyclezation mechanism of sesquiterpenes. Zhongguo Zhong Yao Za Zhi, 46(15), 3797–3805 https://europepmc.org/article/med/34472252
- Shelton, P. M., Grosslight, S. M., Mulligan, B. J., Spargo, H. V., Saad, S. S., & Vyvyan, J. R. (2020). Synthesis of guaipyridine alkaloids (±)-cananodine and (±)-rupestines D and G using an intramolecular Mizoroki-heck reaction. Tetrahedron, 76(41), 1–11. https://doi.org/10.1016/j.tet.2020.131500
- Shen, Q. P., Xu, X. M., Li, L., Zhao, W., Xiang, N. J., & Yang, G. Y. (2016). Sesquiterpenes from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activity. Chinese Chemical Letters, 27(5), 753–756. https://doi.org/10.1016/j.cclet.2016.01.048
- Shindo, K. (2018). A modern purification method for volatile sesquiterpenes produced by recombinant Escherichia coli carrying terpene synthase genes. Bioscience Biotechnology Biochemistry, 82(6), 935–939. https://doi.org/10.1080/09168451.2017.1403882
- Shoaib, M., Shah, I., Ali, N., Adhikari, A., Tahir, M. N., Shah, S. W. A., Ishtiaq, S., Khan, J., Khan, S., & Umer, M. N. (2017). Sesquiterpene lactone! A promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC Complementary and Alternative Medicine, 17(1), 27. https://doi.org/10.1186/s12906-016-1517-y
- Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional Complementary and Alternative Medicine, 10(5), 210–229. https://doi.org/10.4314/ajtcam.v10i5.2
- Stanchev, S., Jensen, F., Hinkov, A., Atanasov, V., Genova-Kalou, P., Argirova, R., & Manolov, I. (2011). Synthesis and inhibiting activity of some 4-hydroxycoumarin derivatives on HIV-1 protease. Pharmacology, 2011, 137637. https://doi.org/10.5402/2011/137637
10.5402/2011/137637 Google Scholar
- Su, Z., Wu, H. K., He, F., Slukhan, U., & Aisa, H. A. (2010). New Guaipyridine sesquiterpene alkaloids from Artemisia rupestris L. Helvetica Chimica Acta, 93(1), 33–38. https://doi.org/10.1002/hlca.200900125
- Sulaiman, M., Qamariyah, S., Widodo, A., & Pitopang, R. (2021). Antiviral screening on Alpinia eremochlamys, Etlingera flexuosa, and Etlingera acanthoides extracts against HIV-infected MT-4 cells. Heliyon, 7, e06710. https://doi.org/10.1016/j.heliyon.2021.e06710
- Sut, S., Maggi, F., Nicoletti, M., Baldan, V., & Dall Acqua, S. (2018). New drugs from old natural compounds: Scarcely investigated sesquiterpenes as new possible therapeutic agents. Current Medicinal Chemistry, 25(10), 1241–1258. https://doi.org/10.2174/0929867324666170404150351
- Takaishi, Y., Ujita, K., Tokuda, H., Nishino, H., Iwashima, A., & Fujita, T. (1992). Inhibitory effects of dihydroagarofuran sesquiterpenes on Epstein-Barr virus activation. Cancer Letters, 65(1), 19–26. https://doi.org/10.1016/0304-3835(92)90208-D
- Tellier, R., Li, Y., Cowling, B. J., & Tang, J. W. (2019). Recognition of aerosol transmission of infectious agents: A commentary. BMC Infectious Diseases, 19(1), 101. https://doi.org/10.1186/s12879-019-3707-y
- Van Beek, T. A., & Joulain, D. (2018). The essential oil of patchouli, Pogostemon cablin: A review. Flavour and Fragrance Journal, 33(1), 6–51. https://doi.org/10.1002/ffj.3418
- Vasconcelos, J. F., Teixeira, M. M., Barbosa-Filho, J. M., Agra, M. F., Nunes, X. P., Giulietti, A. M., Ribeiro-dos-Santos, R., & Soares, M. B. (2009). Effects of umbelliferone in a murine model of allergic airway inflammation. European Journal of Pharmacology, 609, 126–131. https://doi.org/10.1016/j.ejphar.2009.03.027
- Wahyuni, T. S., Widyawaruyanti, A., Lusida, M. I., Fuad, A., Fuchino, H., Kawahara, N., Hayashi, Y., Aoki, C., & Hotta, H. (2014). Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia, 99, 276–283. https://doi.org/10.1016/j.fitote.2014.10.011
- Wang, J. F., He, W. J., Zhang, X. X., Zhao, B. Q., Liu, Y. H., & Zhou, X. J. (2015). Dicarabrol, a new dimeric sesquiterpene from Carpesium abrotanoides L. Bioorganic and Medicinal Chemistry Letters, 25(19), 4082–4084. https://doi.org/10.1016/j.bmcl.2015.08.034
- Wang, Y., Yan, W., Chen, Q., Huang, W., Yang, Z., Li, X., & Wang, X. H. (2017). Inhibition viral RNP and anti-inflammatory activity of coumarins against influenza virus. Biomedicine and Pharmacotherapy, 87, 583–588. https://doi.org/10.1016/j.biopha.2016.12.117
- Wang, Y., Zhou, B., & Lu, J. (2017). Inhibition of influenza virus via a sesquiterpene fraction isolated from Laggera pterodonta by targeting the NF-κB and p38 pathways. BMC Complementary and Alternative Medicine, 17(25), 1–8. https://doi.org/10.1186/s12906-016-1528-8
- Wang, Y., Zhou, B., Lu, J., Chen, Q., Ti, H., Huang, W., Li, J., Yang, Z. F., Jiang, Z., & Wang, X. H. (2017). Inhibition of influenza virus via a sesquiterpene fraction isolated from Laggera pterodonta by targeting the NF-κB and p38 pathways. BMC Complementary and Alternative Medicine, 17(1), 25. https://doi.org/10.1186/s12906-016-1528-8
- Yu, X., & He, S. (2016). The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virology Journal, 13(1), 77. https://doi.org/10.1186/s12985-016-0528-0
- Yusuf, A., Zhao, J., Wang, B., Aibibula, P., Aisa, H. A., & Huang, G. (2018). Total synthesis of rupestine G and its epimers. Royal Society Open Science, 5(3), 172037. https://doi.org/10.1098/rsos.172037
- Yuyama, K. T., Fortkamp, D., & Abraham, W. R. (2017). Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Journal of Biological Chemistry, 399(1), 13–28. https://doi.org/10.1515/hsz-2017-0171
10.1515/hsz?2017?0171 Google Scholar
- Završnik, D., Muratović, S., Makuc, D., Plavec, J., Cetina, M., Nagl, A., Clercq, E. D., Balzarini, J., & Mintas, M. (2011). Benzylidene-bis-(4-hydroxycoumarin) and benzopyrano-coumarin derivatives: Synthesis, 1H/13C-NMR conformational and X-ray crystal structure studies and in vitro antiviral activity evaluations. Molecules, 16, 6023–6040. https://doi.org/10.3390/molecules16076023
- Zhang, C., Wang, B., Aibibula, P., Zhao, J., & Aisa, H. A. (2021). Enantioselective construction of substituted pyridine and a seven-membered carbocyclic skeleton: Biomimetic synthesis of (−)-rupestine D, (−)-guaipyridine, (−)-epiguaipyridine, and (−)-cananodine and their stereoisomers. Organic and Biomolecular Chemistry, 19(32), 7081–7084. https://doi.org/10.1039/D1OB01299A
- Zhang, J., Yuan, L., Wang, S., Liu, J., Bi, H., Chen, G., Li, J., & Chen, L. (2020). Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells. BMC Complementary Medicine and Therapies, 20(1), 77. https://doi.org/10.1186/s12906-020-2865-1
- Zhang, X., Hea, J., Huanga, W., Huanga, H., Zhanga, Z., Wanga, J., Yanga, L., Wanga, G., Wangb, Y., & Lia, Y. (2018). Antiviral activity of the sesquiterpene lactones from Centipeda minima against influenza a virus in vitro. Natural Product Communications, 13(2), 115–119. https://doi.org/10.1177/1934578X1801300201
- Zhang, X., Xia, Y., Yang, L., He, J., Li, Y., & Xia, C. (2019). Brevilin a, a sesquiterpene lactone, inhibits the replication of influenza a virus in vitro and in vivo. Viruses, 11(9), 835. https://doi.org/10.3390/v11090835
- Zhao, Y., Tao, M., Wang, R., Guo, Y., & Wang, M. (2020). Japonicone V, a sesquiterpene lactone derivative from the flowers of Inula japonica, inhibits hepatitis E virus replication by targeting virus-associated autophagy. Journal of Functional Foods, 65, 103755. https://doi.org/10.1016/j.jff.2019.103755
- Zhao, Y., Zhu, K., Li, J., Zhao, Y., Li, S., Zhang, C., Xiao, D., & Yu, A. (2021). High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microbial Biotechnology, 14(6), 2497–2513. https://doi.org/10.1111/1751-7915.13768