Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25)
Daraksha Iram
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorUday Arun Kindarle
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorManish Singh Sansi
Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorSunita Meena
Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorAnil Kumar Puniya
Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorCorresponding Author
Shilpa Vij
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Correspondence
Shilpa Vij, Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
Email: [email protected]
Search for more papers by this authorDaraksha Iram
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorUday Arun Kindarle
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorManish Singh Sansi
Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorSunita Meena
Biofunctional Peptidomics & Metabolic Syndrome Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorAnil Kumar Puniya
Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorCorresponding Author
Shilpa Vij
Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Correspondence
Shilpa Vij, Antimicrobial Peptides, Biofunctional Probiotics & Peptidomics Laboratory, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
Email: [email protected]
Search for more papers by this authorDaraksha Iram and Uday Arun Kindarle contributed equally to this work.
Abstract
Antimicrobial peptides (AMPs) are emerging as promising novel drug applicants. In the present study, goat milk was fermented using Lactobacillus rhamnosus C25 to generate bioactive peptides (BAPs). The peptide fractions generated were separated using ultrafiltration membranes with molecular weight cut-offs of 3, 5, and 10 kDa, and their antimicrobial activity toward Gram-positive and Gram-negative bacteria was investigated. Isolated AMPs were characterized using RP-HPLC and identified by LC–MS/MS. A total of 569 sequences of peptides were identified by mass spectrometry. Out of the 569, 36 were predicted as AMPs, 21 were predicted as cationic, and out of 21, 6 AMPs were helical peptides. In silico analysis indicated that the majority of peptides were antimicrobial and cationic in nature, an important factor for peptide interaction with the negative charge membrane of bacteria. The results showed that the peptides of <5 kDa exhibited maximum antibacterial activity against E. faecalis, E. coli, and S. typhi. Further, molecular docking was used to evaluate the potent MurD ligase inhibitors. On the basis of ligand binding energy, six predicted AMPs were selected and then analyzed by AutoDock tools. Among the six AMPs, peptides IGHFKLIFSLLRV (−7.5 kcal/mol) and KSFCPAPVAPPPPT (−7.6 kcal/mol), were predicted as a high-potent antimicrobial. Based on these findings, in silico investigations reveal that proteins of goat milk are a potential source of AMPs. This is for the first time that the antimicrobial peptides produced by Lactobacillus rhamnosus (C25) fermentation of goat milk have been identified via LC–MS/MS and predicted as AMPs, cationic charges, helical structure in nature, and potent MurD ligase inhibitors. These peptides can be synthesized and improved for use as antimicrobial agents.
Practical applications
Goat milk is considered a high-quality source of milk protein. According to this study, goat milk protein is a potential source of AMPs, Fermentation can yield goat milk-derived peptides with a broad antibacterial activity spectrum at a low cost. The approach described here could be beneficial in that the significant AMPs can be synthesized and used in the pharmaceutical and food industries.
CONFLICT OF INTEREST
There is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jfbc14450-sup-0001-AppendixS1.docxWord 2007 document , 12.1 KB |
Appendix S1: Supporting Information |
jfbc14450-sup-0002-AppendixS2.xlsxExcel 2007 spreadsheet , 36.4 KB |
Appendix S2: Supporting Information |
jfbc14450-sup-0003-AppendixS3.xlsxExcel 2007 spreadsheet , 28.3 KB |
Appendix S3: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abdel-Hamid, M., Romeih, E., Saporito, P., Osman, A., Mateiu, R. V., Mojsoska, B., & Jenssen, H. (2020). Camel milk whey hydrolysate inhibits growth and biofilm formation of Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus. Food Control, 111, 107056.
- Abdou, A. M., Higashiguchi, S., Aboueleinin, A. M., Kim, M., & Ibrahim, H. R. (2007). Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control, 18(2), 173–178.
- Aguilar-Toalá, J. E., Santiago-López, L., Peres, C. M., Peres, C., Garcia, H. S., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of dairy science, 100(1), 65–75.
- Algboory, H. L., & Muhialdin, B. J. (2021). Novel peptides contribute to the antimicrobial activity of camel milk fermented with Lactobacillus plantarum IS10. Food Control, 126, 108057.
- Anishetty, S., Pulimi, M., & Pennathur, G. (2005). Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Computational Biology and Chemistry, 29, 368–378.
- Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., & Blanot, B. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32, 168–207.
- Barroso, C., Carvalho, P., Gonçalves, J. F., Rodrigues, P. N., & Neves, J. V. (2021). Antimicrobial peptides: Identification of two beta-defensins in a Teleost Fish, the European Sea Bass (Dicentrarchus labrax). Pharmaceuticals, 14(6), 566.
- Benkerroum, N. (2010). Antimicrobial peptides generated from milk proteins: A survey and prospects for application in the food industry. A review. International Journal of Dairy Technology, 63(3), 320–338.
- Capriotti, A. L., Caruso, G., Cavaliere, C., Samperi, R., Ventura, S., Chiozzi, R. Z., & Laganà, A. (2015). Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. Journal of Food Composition and Analysis, 44, 205–213.
- Chen, Y., Guarnieri, M. T., Vasil, A. I., Vasil, M. L., Mant, C. T., & Hodges, R. S. (2007). Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 51(4), 1398–1406.
- Clare, D. A., & Swaisgood, H. E. (2000). Bioactive milk peptides: A prospectus. Journal of Dairy Science, 83(6), 1187–1195.
- Cornell, R. B., & Taneva, S. G. (2006). Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Current Protein and Peptide Science, 7(6), 539–552.
- Corrêa, A. P. F., Bertolini, D., Lopes, N. A., Veras, F. F., Gregory, G., & Brandelli, A. (2019). Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT, 101, 107–112.
- Corrêa, A. P. F., Daroit, D. J., Coelho, J., Meira, S. M., Lopes, F. C., Segalin, J., & Brandelli, A. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture, 91(12), 2247–2254.
- Dathe, M., & Wieprecht, T. (1999). Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462(1-2), 71–87.
- Davoodi, S. H., Shahbazi, R., Esmaeili, S., Sohrabvandi, S., Mortazavian, A., Jazayeri, S., & Taslimi, A. (2016). Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research: IJPR, 15(3), 573.
- de Lima, M. D. S. F., da Silva, R. A., da Silva, M. F., da Silva, P. A. B., Costa, R. M. P. B., Teixeira, J. A. C., Porto, A. L. F., & Cavalcanti, M. T. H. (2018). Brazilian kefir-fermented sheep's milk, a source of antimicrobial and antioxidant peptides. Probiotics and Antimicrobial Proteins, 10(3), 446–455.
- del Mar Contreras, M., Carrón, R., Montero, M. J., Ramos, M., & Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. International dairy journal, 19(10), 566–573.
- Domadia, P. N., Bhunia, A., Ramamoorthy, A., & Bhattacharjya, S. (2010). Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: Role of the helical hairpin conformation in outer-membrane permeabilization. Journal of the American Chemical Society, 132(51), 18417–18428.
- Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Scientiarum Polonorum Technologia Alimentaria, 13(1), 5–26.
- El Zoeiby, A., Sanschagrin, F., & Levesque, R. C. (2003). Structure and function of the Mur enzymes: Development of novel inhibitors. Molecular Microbiology, 47, 1–12.
- Expósito, I. L., & Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal, 16(11), 1294–1305.
- García-Tejedor, A., Sánchez-Rivera, L., Recio, I., Salom, J. B., & Manzanares, P. (2015). Dairy Debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP. LWT-Food Science and Technology, 61(2), 550–556.
- Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook: Humana Press(pp. 571–607).
10.1385/1-59259-890-0:571 Google Scholar
- Gautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101–2102.
- Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., & Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: Proteolytic activation and significance in dairy processing. Critical Reviews in Food Science and Nutrition, 42(3), 223–239.
- Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium, & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS One, 8(9), e73957.
- Hancock, R. E., & Rozek, A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiology Letters, 206(2), 143–149.
- Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology, 72(3), 2260–2264.
- He, Y., & Lazaridis, T. (2013). Activity determinants of helical antimicrobial peptides: A large-scale computational study. PloS One, 8(6), e66440.
- Hollmann, A., Martínez, M., Noguera, M. E., Augusto, M. T., Disalvo, A., Santos, N. C., & Maffía, P. C. (2016). Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids and Surfaces B: Biointerfaces, 141, 528–536.
- Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 2559.
- Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88(6), 1895–1898.
- Iram, D., Sansi, M. S., Zanab, S., Vij, S., & Meena, S. (2022). In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins—A molecular docking study. Journal of Food Biochemistry, e14137.
- Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187.
- Lafarga, T., O'Connor, P., & Hayes, M. (2014). Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 59, 53–62.
- Lopez-Exposito, I., Minervini, F., Amigo, L., & Recio, I. (2006). Identification of antibacterial peptides from bovine κ-casein. Journal of Food Protection, 69(12), 2992–2997.
- Luisa Mangoni, M., Di Grazia, A., Cappiello, F., Casciaro, B., & Luca, V. (2016). Naturally occurring peptides from Rana temporaria: Antimicrobial properties and more. Current Topics in Medicinal Chemistry, 16(1), 54–64.
- Malanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(5), 936–946.
- Mangoni, M. L., Papo, N., Saugar, J. M., Barra, D., Shai, Y., Simmaco, M., & Rivas, L. (2006). Effect of natural L-to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry, 45(13), 4266–4276.
- Manna, S., Ghosh, A. K., & Mandal, S. M. (2019). Curd-peptide based novel hydrogel inhibits biofilm formation, quorum sensing, swimming mortility of multi-antibiotic resistant clinical isolates and accelerates wound healing activity. Frontiers in Microbiology, 10, 951.
- Matin, M. A., & Otani, H. (2002). Cytotoxic and antibacterial activities of chemically synthesized κ-casecidin and its partial peptide fragments. Journal of Dairy Research, 69(2), 329–334.
- Meher, P. K., Sahu, T. K., & Rao, A. R. (2016). Prediction of donor splice sites using random forest with a new sequence encoding approach. BioData mining, 9(1), 1–25.
- Miao, J., Liu, G., Ke, C., Fan, W., Li, C., Chen, Y., & Xiao, H. (2016). Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli. Food Control, 65, 63–72.
- Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V., & Gobbetti, M.(2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Applied and Environmental Microbiology, 69(9), 5297–5305.
- Mohammadi, M., Taheri, B., Momenzadeh, N., Salarinia, R., Nabipour, I., Farshadzadeh, Z., & Bargahi, A. (2018). Identification and characterization of novel antimicrobial peptide from hippocampus comes by in silico and experimental studies. Marine Biotechnology, 20(6), 718–728.
- Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J. Á., Martínez, R. G., Miralles, B., Bergillos, T., & Jauregi, P. (2017). Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components. Food & Function, 8(8), 2783–2791.
- Moulay, M., Aggad, H., Benmechernene, Z., Guessas, B., Henni, D. E., & Kihal, M. (2006). Cultivable lactic acid bacteria isolated from Algerian raw goat's milk and their proteolytic activity. World Journal of Dairy & Food Sciences, 1(1), 12–18.
- Najafian, L., & Babji, A. S. (2014). Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods, 9, 280–289.
- Nielsen, P. M., Petersen, D., & Dambmann, C. J. J. O. F. S. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5), 642–646.
- Ono, K., Fujimoto, E., Fujimoto, N., Akiyama, M., Satoh, T., Maeda, H., & Tajima, S. (2014). In vitro amyloidogenic peptides of galectin-7. Journal of Biological Chemistry, 289(42), 29195–29207.
- Panchal, G. K., Das, S., Sakure, A., Singh, B. P., & Hati, S. (2021). Production and characterization of antioxidative peptides during lactic fermentation of goat milk. Journal of Food Processing and Preservation, 45(12), e15992.
- Panchal, G., Hati, S., & Sakure, A. (2020). Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. LWT, 119, 108887.
- Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
- Potočnik, K., Gantner, V., Kuterovac, K., & Cividini, A. (2011). Mare's milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 61(2), 107–113.
- Qian, Z. Y., Jollès, P., Migliore-Samour, D., Schoentgen, F., & Fiat, A. M. (1995). Sheep κ-casein peptides inhibit platelet aggregation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1244(2-3), 411–417.
- Rahman, M., Browne, J. J., Van Crugten, J., Hasan, M., Liu, L., & Barkla, B. J. (2020). In silico, molecular docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Frontiers in Pharmacology, 11, 1340.
- Redwan, E. M., Abd El-Baky, N., Al-Hejin, A. M., Baeshen, M. N., Almehdar, H. A., Elsaway, A., & Uversky, V. N. (2016). Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Research in Microbiology, 167(6), 480–491.
- Romay, C. H., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein and Peptide Science, 4(3), 207–216.
- Sansi, M. S., Iram, D., Zanab, S., Vij, S., Puniya, A. K., Singh, A., & Meena, S. (2022). Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis. Journal of Food Biochemistry, e14311.
- Saravanan, R., Joshi, M., Mohanram, H., Bhunia, A., Mangoni, M. L., & Bhattacharjya, S. (2013). NMR structure of temporin-1 ta in lipopolysaccharide micelles: Mechanistic insight into inactivation by outer membrane. PloS One, 8(9), e72718.
- Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71(4), 394–406.
- Silva, S. V., & Malcata, F. X. (2005). Caseins as source of bioactive peptides. International Dairy Journal, 15(1), 1–15.
- Singh, B. P., Bhushan, B., & Vij, S. (2020). Antioxidative, ACE inhibitory and antibacterial activities of soy milk fermented by indigenous strains of lactobacilli. Legume Science, 2(4), e54.
- Smith, P. E., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.
- Solanki, D., & Hati, S. (2018). Considering the potential of Lactobacillus rhamnosus for producing Angiotensin I-Converting Enzyme (ACE) inhibitory peptides in fermented camel milk (Indian breed). Food bioscience, 23, 16–22.
- Tagliazucchi, D., Martini, S., Shamsia, S., Helal, A., & Conte, A. (2018). Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. International Dairy Journal, 81, 19–27.
- Tang, W., Yuan, H., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method. Food Control, 50, 413–422.
- Théolier, J., Hammami, R., Labelle, P., Fliss, I., & Jean, J. (2013). Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods, 5(2), 706–714.
- Tomazou, M., Oulas, A., Anagnostopoulos, A. K., Tsangaris, G. T., & Spyrou, G. M. (2019). In silico identification of antimicrobial peptides in the proteomes of goat and sheep milk and feta cheese. Proteomes, 7(4), 32.
- Toropova, A. P., Toropov, A. A., Roncaglioni, A., & Benfenati, E. (2021). The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella). Computers in biology and Medicine, 133, 104370.
- Torrent, M., Andreu, D., Nogués, V. M., & Boix, E. (2011). Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PloS one, 6(2), e16968.
- Tossi, A., & Sandri, L. (2002). Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Current Pharmaceutical Design, 8(9), 743–761.
- Trujillo, A. J., Casals, I., & Guamis, B. (2000). Analysis of major ovine milk proteins by reversed-phase high-performance liquid chromatography and flow injection analysis with electrospray ionization mass spectrometry. Journal of Chromatography A, 870(1-2), 371–380.
- Vollmer, W., Blanot, D., & de Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 32, 149–167.
- Walsh, A. W., Falk, P. J., Thanassi, J., Discotto, L., Pucci, M. J., & Ho, H. T. (1999). Comparison of the D-glutamateadding enzymes from selected gram-positive and gramnegative bacteria. Journal of Bacteriology, 181, 5395–5401.
- Worsztynowicz, P., Białas, W., & Grajek, W. (2020). Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chemistry, 312, 126035.
- Xiong, M., Lee, M. W., Mansbach, R. A., Song, Z., Bao, Y., Peek, R. M., Yao, C., Chen, L. F., Ferguson, A. L., Wong, G. C., & Cheng, J. (2015). Helical antimicrobial polypeptides with radial amphiphilicity. Proceedings of the National Academy of Sciences, 112(43), 13155–13160.
- Yu, Z., Xu, Q., Dong, C., Lee, S. S., Gao, L., Li, Y., & Wu, J. (2015). Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. Current Pharmaceutical Design, 21(29), 4342–4354.
- Zhang, P., Chang, C., Liu, H., Li, B., Yan, Q., & Jiang, Z. (2020). Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. Journal of Functional Foods, 65, 103751.
- Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 1–25.
- Zhang, Y., Chen, R., Ma, H., & Chen, S. (2015). Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC–MS/MS. Journal of Agricultural and Food Chemistry, 63(40), 8819–8828.
- Zhao, Q., Shi, Y., Wang, X., & Huang, A. (2020). Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. Journal of Dairy Science, 103(12), 11116–11128.