Protective role of hesperidin against diabetes induced spleen damage: Mechanism associated with oxidative stress and inflammation
Corresponding Author
Wanthanee Hanchang
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Correspondence
Wanthanee Hanchang, Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
Email: [email protected] and [email protected]
Search for more papers by this authorNavinee Wongmanee
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorSasiwat Yoopum
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorWorarat Rojanaverawong
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorCorresponding Author
Wanthanee Hanchang
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Correspondence
Wanthanee Hanchang, Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
Email: [email protected] and [email protected]
Search for more papers by this authorNavinee Wongmanee
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorSasiwat Yoopum
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorWorarat Rojanaverawong
Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
Search for more papers by this authorAbstract
Diabetes mellitus is a metabolic disease affecting various organs, including the spleen and is characterized by chronic hyperglycemia. Oxidative and inflammatory stress are key mediators in the development of spleen damage caused by diabetes. This study aimed to examine the splenoprotective effect of hesperidin and the mechanisms underlying its capacity to reduce oxidative stress and inflammation-mediated spleen damage in diabetes. The diabetic rats used in this study were induced with a 65 mg per kg body weight of streptozotocin. This was followed by 4 weeks of continuous daily dosage of hesperidin treatment at 100 mg/kg body weight. The results showed that hesperidin improved spleen weight and histopathological alterations in the diabetic rats. The hesperidin-treated diabetic group showed a marked induction of SOD and GPx enzymes and moderated malondialdehyde level. This was in addition to an obvious decrease in the levels of TNF-α and NF-ᴋB in the diabetic rat spleen. Through a remarkable upregulation in Bcl-xL and downregulation in Bax and cleaved caspase-3 proteins, hesperidin supplementation rescued splenic cell apoptosis in the diabetic rats. These findings demonstrate the effectiveness of hesperidin in helping regulate Bcl-2 family proteins and inhibiting the oxidative stress and inflammatory status of hyperglycemia-mediated spleen apoptosis.
Practical applications
Diabetes-related spleen damage increases immune dysfunction, which often results in the heightened risks of infection, morbidity and mortality in diabetic patients. In this work, hesperidin was used in the treatment of rats with diabetes-induced splenic damage. The results were highly encouraging with hesperidin consistently presenting beneficial antioxidant and anti-inflammatory qualities and splenoprotective effect. Research outcomes support the notion that hesperidin treatment could be considered a good strategy for the prevention of diabetic complications in the spleen.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest regarding the publication of this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jfbc14444-sup-0001-Supplementary data.docxWord 2007 document , 1.7 MB |
Supplementary information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Ashafaq, M., Varshney, L., Khan, M. H. A., Salman, M., Naseem, M., Wajid, S., & Parvez, S. (2014). Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. BioMed Research International, 2014, 249031. https://doi.org/10.1155/2014/249031
- Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405–412. https://doi.org/10.2337/diab.40.4.405
- Berbudi, A., Rahmadika, N., Tjahjadi, A. I., & Ruslami, R. (2020). Type 2 diabetes and its impact on the immune system. Current Diabetes Reviews, 16(5), 442–449. https://doi.org/10.2174/1573399815666191024085838
- Bronte, V., & Pittet, M. J. (2013). The spleen in local and systemic regulation of immunity. Immunity, 39(5), 806–818. https://doi.org/10.1016/j.immuni.2013.10.010
- Cesta, M. F. (2006). Normal structure, function, and histology of the spleen. Toxicologic Pathology, 34(5), 455–465. https://doi.org/10.1080/01926230600867743
- Chadburn, A. (2000). The spleen: Anatomy and anatomical function. Seminars in Hematology, 37, 13–21. https://doi.org/10.1016/S0037-1963(00)90113-6
- Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 48(6), 749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
- Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes, 54(suppl_2), S97–S107. https://doi.org/10.2337/diabetes.54.suppl_2.S97
- Critchley, J. A., Carey, I. M., Harris, T., DeWilde, S., Hosking, F. J., & Cook, D. G. (2018). Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care, 41(10), 2127–2135. https://doi.org/10.2337/dc18-0287
- Dokumacioglu, E., Iskender, H., & Musmul, A. (2019). Effect of hesperidin treatment on α-klotho/FGF-23 pathway in rats with experimentally-induced diabetes. Biomedicine & Pharmacotherapy, 109, 1206–1210. https://doi.org/10.1016/j.biopha.2018.10.192
- Dokumacioglu, E., Iskender, H., Sen, T. M., Ince, I., Dokumacioglu, A., Kanbay, Y., & Saral, S. (2018). The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and Interleukin-6 levels in streptozotocin-induced diabetes model. Pharmacognosy Magazine, 14(54), 167–173. https://doi.org/10.4103/pm.pm_41_17
- Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188. https://doi.org/10.1152/physrev.00045.2011
- Gandhi, G. R., Vasconcelos, A. B. S., Wu, D.-T., Li, H.-B., Antony, P. J., Li, H., & Gan, R.-Y. (2020). Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients, 12(10), 2907. https://doi.org/10.3390/nu12102907
- Geerlings, S. E., & Hoepelman, A. I. M. (1999). Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology & Medical Microbiology, 26(3–4), 259–265. https://doi.org/10.1111/j.1574-695X.1999.tb01397.x
- Ghorbani, A., Rashidi, R., & Shafiee-Nick, R. (2019). Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy, 111, 947–957. https://doi.org/10.1016/j.biopha.2018.12.127
- Ghosh, S., Chowdhury, S., Sarkar, P., & Sil, P. C. (2018). Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food and Chemical Toxicology, 118, 272–286. https://doi.org/10.1016/j.fct.2018.05.029
- Giacco, F., Brownlee, M., & Schmidt, A. M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
- Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomedicine & Pharmacotherapy, 107, 306–328. https://doi.org/10.1016/j.biopha.2018.07.157
- Goyal, S. N., Reddy, N. M., Patil, K. R., Nakhate, K. T., Ojha, S., Patil, C. R., & Agrawal, Y. O. (2016). Challenges and issues with streptozotocin-induced diabetes – A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chemico-Biological Interactions, 244, 49–63. https://doi.org/10.1016/j.cbi.2015.11.032
- Hanchang, W., Khamchan, A., Wongmanee, N., & Seedadee, C. (2019). Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sciences, 235, 116858. https://doi.org/10.1016/j.lfs.2019.116858
- Iskender, H., Dokumacioglu, E., Sen, T. M., Ince, I., Kanbay, Y., & Saral, S. (2017). The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine & Pharmacotherapy, 90, 500–508. https://doi.org/10.1016/j.biopha.2017.03.102
- Justin-Thenmozhi, A., Dhivya Bharathi, M., Kiruthika, R., Manivasagam, T., Borah, A., & Essa, M. M. (2018). Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in Wistar rats. Neurotoxicity Research, 34(3), 463–476. https://doi.org/10.1007/s12640-018-9904-4
- Kakadiya, J., Mulani, H., & Shah, N. (2010). Protective effect of hesperidin on cardiovascular complication in experimentally induced myocardial infarction in diabetes in rats. Journal of Basic and Clinical Pharmacy, 1(2), 85–91 https://pubmed.ncbi.nlm.nih.gov/24825971
- Keane, K. N., Cruzat, V. F., Carlessi, R., de Bittencourt, P. I. H., Jr., & Newsholme, P. (2015). Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxidative Medicine and Cellular Longevity, 2015, 181643. https://doi.org/10.1155/2015/181643
- Ley, E. J., Singer, M. B., Clond, M. A., Johnson, T., Bukur, M., Chung, R., & Salim, A. (2012). Long-term effect of trauma splenectomy on blood glucose. Journal of Surgical Research, 177(1), 152–156. https://doi.org/10.1016/j.jss.2012.03.068
- Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002
- Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023. https://doi.org/10.1038/sigtrans.2017.23
- Liu, W. Y., Liou, S.-S., Hong, T.-Y., & Liu, I.-M. (2017). Protective effects of hesperidin (citrus Flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy. Nutrients, 9(12), 1312. https://doi.org/10.3390/nu9121312
- Mahmoud, A. M., Ashour, M. B., Abdel-Moneim, A., & Ahmed, O. M. (2012). Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. Journal of Diabetes and its Complications, 26(6), 483–490. https://doi.org/10.1016/j.jdiacomp.2012.06.001
- Manna, P., Ghosh, J., Das, J., & Sil, P. C. (2010). Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid. Toxicology and Applied Pharmacology, 244(2), 114–129. https://doi.org/10.1016/j.taap.2009.12.024
- Mariño, E., Batten, M., Groom, J., Walters, S., Liuwantara, D., Mackay, F., & Grey, S. T. (2008). Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes, 57(2), 395–404. https://doi.org/10.2337/db07-0589
- Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
- Mebius, R. E., & Kraal, G. (2005). Structure and function of the spleen. Nature Reviews Immunology, 5(8), 606–616. https://doi.org/10.1038/nri1669
- Morgan, M. J., & Liu, Z. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21(1), 103–115. https://doi.org/10.1038/cr.2010.178
- Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169. https://doi.org/10.5555/uri:pii:0022214367900765
- Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
- Peng, P., Jin, J., Zou, G., Sui, Y., Han, Y., Zhao, D., & Liu, L. (2020). Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Experimental and Therapeutic Medicine, 21, 53. https://doi.org/10.3892/etm.2020.9485
- Rashid, K., Chowdhury, S., Ghosh, S., & Sil, P. C. (2017). Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochemical Pharmacology, 143, 140–155. https://doi.org/10.1016/j.bcp.2017.07.009
- Rehman, K., Munawar, S. M., Akash, M. S. H., Buabeid, M. A., Chohan, T. A., Tariq, M., & Arafa, E.-S. A. (2020). Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One, 15(1), e0227637. https://doi.org/10.1371/journal.pone.0227637
- Robertson, R. P., Zhou, H., Zhang, T., & Harmon, J. S. (2007). Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochemistry and Biophysics, 48(2), 139–146. https://doi.org/10.1007/s12013-007-0026-5
- Ryu, S., Kodama, S., Ryu, K., Schoenfeld, D. A., & Faustman, D. L. (2001). Reversal of established autoimmune diabetes by restoration of endogenous β cell function. The Journal of Clinical Investigation, 108(1), 63–72. https://doi.org/10.1172/JCI12335
- Sayed, L. H., Badr, G., Omar, H. M., Abd El-Rahim, A. M., & Mahmoud, M. H. (2017). Camel whey protein improves oxidative stress and histopathological alterations in lymphoid organs through Bcl-XL/Bax expression in a streptozotocin-induced type 1 diabetic mouse model. Biomedicine & Pharmacotherapy, 88, 542–552. https://doi.org/10.1016/j.biopha.2017.01.076
- Shohta, K., Willem, K., Satoshi, F., Dale, E. A., & Faustman, D. L. (2003). Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science, 302(5648), 1223–1227. https://doi.org/10.1126/science.1088949
- Shokoohi, M., Khaki, A., Shoorei, H., Khaki, A. A., Moghimian, M., & Abtahi-Eivary, S.-H. (2020). Hesperidin attenuated apoptotic-related genes in testicle of a male rat model of varicocoele. Andrology, 8(1), 249–258. https://doi.org/10.1111/andr.12681
- Sinha, K., Das, J., Pal, P. B., & Sil, P. C. (2013). Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology, 87(7), 1157–1180. https://doi.org/10.1007/s00204-013-1034-4
- Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., & Magliano, D. J. (2021). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
- Sutradhar, S., Deb, A., & Singh, S. S. (2020). Melatonin attenuates diabetes-induced oxidative stress in spleen and suppression of splenocyte proliferation in laboratory mice. Archives of Physiology and Biochemistry, 1–12, 1–12. https://doi.org/10.1080/13813455.2020.1773506
- Thorvaldson, L., Holstad, M., & Sandler, S. (2003). Cytokine release by murine spleen cells following multiple low dose streptozotocin-induced diabetes and treatment with a TNFα transcriptional inhibitor. International Immunopharmacology, 3(12), 1609–1617. https://doi.org/10.1016/S1567-5769(03)00183-8
- Turk, E., Kandemir, F. M., Yildirim, S., Caglayan, C., Kucukler, S., & Kuzu, M. (2019). Protective effect of hesperidin on sodium Arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biological Trace Element Research, 189(1), 95–108. https://doi.org/10.1007/s12011-018-1443-6
- Volpe, C. M. O., Villar-Delfino, P. H., dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2), 119. https://doi.org/10.1038/s41419-017-0135-z
- Wang, C., Guan, Y., & Yang, J. (2010). Cytokines in the progression of pancreatic β-cell dysfunction. International Journal of Endocrinology, 2010, 515136. https://doi.org/10.1155/2010/515136
- Wang, M., Xiong, Y., Zhu, W., Ruze, R., Xu, Q., Yan, Z., & Zhang, G. (2021). Sleeve gastrectomy ameliorates diabetes-related spleen damage by improving oxidative stress status in diabetic obese rats. Obesity Surgery, 31(3), 1183–1195. https://doi.org/10.1007/s11695-020-05073-3
- Weir, G. C., Gaglia, J., & Bonner-Weir, S. (2020). Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. The Lancet Diabetes & Endocrinology, 8(3), 249–256. https://doi.org/10.1016/S2213-8587(20)30022-X
- Yari, Z., Movahedian, M., Imani, H., Alavian, S. M., Hedayati, M., & Hekmatdoost, A. (2020). The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. European Journal of Nutrition, 59(6), 2569–2577. https://doi.org/10.1007/s00394-019-02105-2
- Yin, D., Tao, J., Lee, D. D., Shen, J., Hara, M., Lopez, J., & Chong, A. S. (2006). Recovery of islet β-cell function in streptozotocin- induced diabetic mice: An indirect role for the spleen. Diabetes, 55(12), 3256–3263. https://doi.org/10.2337/db05-1275