Research progress in the preparation, structural characterization, bioactivities, and potential applications of sulfated agarans from the genus Gracilaria
Feifei Li
Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Kehai Liu
Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
Correspondence
Kehai Liu, Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Writing - review & editing
Search for more papers by this authorFeifei Li
Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Kehai Liu
Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
Correspondence
Kehai Liu, Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Writing - review & editing
Search for more papers by this authorAbstract
The genus Gracilaria produces 80% of the world's industrial agar. Agar of this genus is a promising biologically active polymer, which has been used in the human diet and folk medicine, alternative for weight loss, treatment of diarrhea, etc. With more attention paid to the genus Gracilaria-sulfated agarans (GSAs), they exhibited multitudinous health benefits in antioxidant, antiviral, antibacterial, prebiotics, anti-tumor, anticoagulant, and antidiabetic. Various preparation procedures of GSAs making the diversities of structure and biological activity. Therefore, this review summarized the isolation, identification, bioactivity potentials, and applications of GSAs, providing a reference to the development of GSAs in functional food and pharmaceutical industry.
Practical applications
The genus Gracilaria is known as a raw material for agar extraction. GSAs are food-grade agaran with the properties of thermoreversible gels at low concentrations, which are commonly used as an additive for making candies as well as raw material for making soup and snacks. They are used in folk medicine to treat diarrhea and other diseases. As an important bioactive macromolecule, GSAs have various biological activities (such as antioxidant, antiviral, antibacterial, probiotic, anti-tumor, anticoagulant, and antidiabetic activities), and have the potential to be developed as functional food and medicine. They could also be used to create innovative agar-based products such as antibacterial films and drug carriers.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- Alencar, P. O. C., Lima, G. C., Barros, F. C. N., Costa, L. E. C., Ribeiro, C. V. P. E., Sousa, W. M., Sombra, V. G., Abreu, C. M. W. S., Abreu, E. S., Pontes, E. O. B., Oliveira, A. C., Paula, R. C. M., & Freitas, A. L. P. (2019). A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: in vitro and in vivo activities. Food Hydrocolloids, 90, 28–34. https://doi.org/10.1016/j.foodhyd.2018.12.007
- Amorim, R. D. D., Rodrigues, J. A. G., Holanda, M. L., Quindere, A. L. G., de Paula, R. C. M., Melo, V. M. M., & Benevides, N. M. (2012). Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Brazilian Archives of Biology and Technology, 55(2), 171–181. https://doi.org/10.1590/S1516-89132012000200001
- Andriamanantoanina, H., Chambat, G., & Rinaudo, M. (2007). Fractionation of extracted Madagascan Gracilaria corticata polysaccharides: structure and properties. Carbohydrate Polymers, 68(1), 77–88. https://doi.org/10.1016/j.carbpol.2006.07.023
- Arano, K. G., Trono, G. C., Montano, N. E., Hurtado, A. Q., & Villanueva, R. D. (2000). Growth, agar yield and quality of selected agarophyte species from The Philippines. Botanica Marina, 43(6), 517–524. https://doi.org/10.1515/bot.2000.051
- Archana, G., Mani, V., Duc Nguyen, D., Ravindran, B., Rembulan, G. D., Duc La, D., & Chang, S. W. (2021). In-vitro disintegration and dissolution of facile synthesised vegetable capsule films from Abelmoscus esculentus and Gracilaria corticata polysaccharides. Progress in Organic Coatings, 155, 106012. https://doi.org/10.1016/j.porgcoat.2020.106012
- Armisen, R. (1995). Worldwide use and importance of Gracilaria. Journal of Applied Phycology, 7(3), 231–243. https://doi.org/10.1007/bf00003998
- Aureli, M., Mauri, L., Ciampa, M. G., Prinetti, A., Toffano, G., Secchieri, C., & Sonnino, S. (2016). GM1 Ganglioside: past studies and future potential. Molecular Neurobiology, 53(3), 1824–1842. https://doi.org/10.1007/s12035-015-9136-z
- Barros, F. C. N., da Silva, D. C., Sombra, V. G., Maciel, J. S., Feitosa, J. P. A., Freitas, A. L. P., & Paula, R. C. M. (2013). Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydrate Polymers, 92(1), 598–603. https://doi.org/10.1016/j.carbpol.2012.09.009
- Bezerra, F. F., Lima, G. C., de Sousa, N. A., de Sousa, W. M., Costa, L. E. C., da Costa, D. S., Barros, F. C. N., Medeiros, V. R., & Freitas, A. L. P. (2018). Antidiarrheal activity of a novel sulfated polysaccharide from the red seaweed Gracilaria cervicornis. Journal of Ethnopharmacology, 224, 27–35. https://doi.org/10.1016/j.jep.2018.05.033
- Bin, Z., Yang, L., Huanhuan, W., Wenhua, L., Kit-leong, C., & Bo, T. (2021). Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. LWT-Food Science and Technology, 150, 111961. https://doi.org/10.1016/j.lwt.2021.111961
- Buschmann, A. H., Troell, M., Kautsky, N., & Kautsky, L. (1996). Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia, 327, 75–82. https://doi.org/10.1016/j.jep.2018.10.1007/BF00047789
- Calumpong, H., Maypa, A., Magbanua, M., & Suarez, P. (1999). Biomass and agar assessment of three species of Gracilaria from Negros Island, central Philippines. Hydrobiologia, 398, 173–181. https://doi.org/10.1023/A:1017063707984
- Cardoso, S. M., Carvalho, L. G., Silva, P. J., Rodrigues, M. S., Pereira, O. R., & Pereira, L. (2014). Bioproducts from seaweeds: A review with special focus on the Iberian Peninsula. Current Organic Chemistry, 18(7), 896–917. https://doi.org/10.2174/138527281807140515154116
- Cases, M. R., Cerezo, A. S., & Stortz, C. A. (1995). Separation and quantitation of enantiomeric galactoses and their mono-o-methylethers as their diastereomeric acetylated 1-deoxy-1-(2-hydroxypropylamino) alditols. Carbohydrate Research, 269(2), 333–341. https://doi.org/10.1016/0008-6215(94)00370-U
- Chattopadhyay, K., Ghosh, T., Pujol, C. A., Carlucci, M. J., Damonte, E. B., & Ray, B. (2008). Polysaccharides from Gracilaria corticata: Sulfation, chemical characterization and anti-HSV activities. International Journal of Biological Macromolecules, 43(4), 346–351. https://doi.org/10.1016/j.ijbiomac.2008.07.009
- Chen-shan, S., Gui-qing, S., Rui-xia, W., Zheng-si, G., & Xiang-hong, W. (2016). Primary structural characterization and cell immunomodulatory activity of a non-agar polysaccharide obtained from Gracilaria lemaneiformis. Modern Food Science and Technology, 7, 12–17. https://doi.org/10.13982/j.mfst.1673-9078.2016.7.003
10.13982/j.mfst.1673?9078.2016.7.003 Google Scholar
- Cherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., McSorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from seaweeds: an ocean of opportunity? Marine Drugs, 17(6), 327. https://doi.org/10.3390/md17060327
- Cian, R. E., Drago, S. R., de Medina, F. S., & Martinez-Augustin, O. (2015). Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Marine Drugs, 13(8), 5358–5383. https://doi.org/10.3390/md13085358
- Coura, C. O., de Araujo, I. W. F., Vanderlei, E. S. O., Rodrigues, J. A. G., Quindere, A. L. G., Fontes, B. P., de Queiroz, I. N. L., de Menezes, D. B., Bezerra, M. M., e Silva, A. A. R., Chaves, H. V., Jorge, R. J. B., Evangelista, J. S. A. M., Benevides, N. M. B. (2012). Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic & Clinical Pharmacology & Toxicology, 110(4), 335–341. https://doi.org/10.1111/j.1742-7843.2011.00811.x
- Craigie, J. S., Wen, Z. C., & Van der Meer, J. P. (1984). Interspecific, intraspecific and nutritionally-determined variations in the composition of. agars from Gracilaria spp. Botanica Marina, 27(2), 55–62. https://doi.org/10.1515/botm.1984.27.2.55
- Di, T., Chen, G. J., Sun, Y., Ou, S. Y., Zeng, X. X., & Ye, H. (2017). Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. Journal of Functional Foods, 28, 64–75. https://doi.org/10.1016/j.jff.2016.11.005
- Di, T., Chen, G., Sun, Y., Ou, S., Zeng, X., & Ye, H. (2018). In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra. Journal of Functional Foods, 40, 18–27. https://doi.org/10.1016/j.jff.2017.10.040
- Efinmov, V. S., Usov, A. I., Ol'skaia, T. S., Baliunis, A. I., & Rozkin, M. I. (1983). Comparative study of the anticoagulant activity of sulfated polysaccharides from red marine algae. [Sravnitel'noe issledovanie antikoaguliantnoi aktivnosti sul'fatirovannykh polisakharidov krasnykh morskikh vodoroslei.]. Farmakologiia i Toksikologiia, 46(3), 61–67.
- Espinoza-Avalos, J., Hernandez-Garibay, E., Zertuche-Gonzalez, J. A., & del Castillo, M. E. M. (2003). Agar from two coexisting species of Gracilaria (Gracilariaceae) from the Mexican Caribbean. Ciencias Marinas, 29(2), 211–227. https://doi.org/10.1016/0008-6215(89)84148-5
- Falshaw, R., Furneaux, R. H., Pickering, T. D., & Stevenson, D. E. (1999). Agars from three Fijian Gracilaria species. Botanica Marina, 42(1), 51–59. https://doi.org/10.1515/BOT.1999.008
- Fernández, L., Valiente, O. G., Mainardi, V., Bello, J. L., Vélez, H., & Rosado, A. (1989). Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydrate Research, 190(1), 77–83. https://doi.org/10.1016/0008-6215(89)84148-5
- Fidelis, G. P., Camara, R. B., Queiroz, M. F., Santos Pereira Costa, M. S., Santos, P. C., Rocha, H. A., & Costa, L. S. (2014). Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae. Molecules, 19(11), 18511–18526. https://doi.org/10.3390/molecules191118511
- Fu, X. M., Zhang, M. Q., Shao, C. L., Li, G. Q., Bai, H., Dai, G. L., Chen, Q. W., Kong, W., Fu, X. J., & Wang, C. Y. (2016). Chinese marine materia medica resources: status and potential. Marine Drugs, 14(3), 46. https://doi.org/10.3390/md14030046
- Gioele, C., Marilena, S., Valbona, A., Nunziacarla, S., Andrea, S., & Antonio, M. (2017). Gracilaria gracilis, source of agar: A short review. Current Organic Chemistry, 21(5), 380–386. https://doi.org/10.2174/1385272820666161017164605
- Gu, Y., Cheong, K.-L., & Du, H. (2017). Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties. Chemistry Central Journal, 11, 104. https://doi.org/10.1186/s13065-017-0334-9
- Guimares, M., Viana, A. G., Duarte, M. R., Ascêncio, S., Plastino, E. M., & Noseda, M. (2007). Low-molecular-mass carbohydrates and soluble polysaccharides of green and red morphs of Gracilaria domingensis (Gracilariales, Rhodophyta). Botanica Marina, 50(5/6), 314–317. https://doi.org/10.1515/BOT.2007.036
- Hemmingson, J. A., & Furneaux, R. H. (1997). Biosynthetic activity and galactan composition in different regions of the thallus of Gracilaria chilensis bird, McLachlan et Oliveira. Botanica Marina, 40(4), 351–357. https://doi.org/10.1515/botm.1997.40.1-6.351
- Hemmingson, J. A., & Furneaux, R. H. (2000). Manipulation of galactan biosynthesis in Gracilaria chilensis Bird, McLachlan et Oliveira by light deprivation. Botanica Marina, 43(3), 285–289. https://doi.org/10.1515/bot.2000.030
- Hemmingson, J. A., & Furneaux, R. H. (2003). Variation of native agar gel strength in light deprived Gracilaria chilensis Bird, McLachlan et Oliveira. Botanica Marina, 46(3), 307–314. https://doi.org/10.1515/bot.2003.027
- Hemmingson, J. A., Furneaux, R. H., & Wong, H. (1996). In vivo conversion of 6-O-sulfo-L-galactopyranosyl residues into 3,6-anhydro-L-galactopyranosyl residues in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydrate Research, 296, 285–292. https://doi.org/10.1016/s0008-6215(96)00247-9
- Imjongjairak, S., Ratanakhanokchai, K., Laohakunjit, N., Tachaapaikoon, C., Pason, P., & Waeonukul, R. (2016). Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri. Bioscience, Biotechnology, and Biochemistry, 80(3), 524–532. https://doi.org/10.1080/09168451.2015.1101334
- Ji, M., Lahaye, M., & Yaphe, W. (1986). Structural feature of agar from chinese Gracilaria spp. (Rhodophyta). Botanica Marina, 17(01), 72–83. https://doi.org/10.1515/botm.1985.28.12.521
- Jindal, M., Rana, V., Kumar, V., Singh, R. S., Kennedy, J. F., & Tiwary, A. K. (2013). Sulfation of aegle marmelos gum: synthesis, physico-chemical and functional characterization. Carbohydrate Polymers, 92(2), 1660–1668.
- Jonsson, M., Allahgholi, L., Sardari, R. R. R., Hreggvidsson, G. O., & Karlsson, E. N. (2020). Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules, 25(4), 930. https://doi.org/10.3390/molecules25040930
- Ju, Y. Y., Cao, C. J., Chen, M. Z., & Ye, T. W. (2016). Optimization of extraction of polysaccharides from Gracilaria chouae and their inhibitory effects on tumor cells. Food Science, 37(8), 57–62. https://doi.org/10.7506/spkx1002-6630-201608010
- Kazlowski, B., Chiu, Y. H., Kaztowska, K., Pan, C. L., & Wu, C. J. (2012). Prevention of Japanese encephalitis virus infections by low-degree-polymerisation sulfated saccharides from Gracilaria sp. and Monostroma nitidum. Food Chemistry, 133(3), 866–874. https://doi.org/10.1016/j.foodchem.2012.01.106
- Khan, B. M., Qiu, H. M., Wang, X. F., Liu, Z. Y., Zhang, J. Y., Guo, Y. J., Chen, W. Z., Liu, Y., & Chong, K. L. (2019). Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential. International Journal of Biological Macromolecules, 134, 255–261. https://doi.org/10.1016/j.ijbiomac.2019.05.055
- Khan, B. M., Zheng, L. X., Khan, W., Shah, A. A., Liu, Y., & Cheong, K. L. (2021). Antioxidant potential of physicochemically characterized Gracilaria blodgettii sulfated polysaccharides. Polymers, 13(3), 442. https://doi.org/10.3390/polym13030442
- Knutsen, S. H., Myslabodski, D. E., Larsen, B., & Usov, A. I. (1994). A modified system of nomenclature for red algal galactans. Botanica Marina, 37(2), 163–169. https://doi.org/10.1515/botm.1994.37.2.163
- Kumar, V., & Fotedar, R. (2009). Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydrate Polymers, 78(4), 813–819. https://doi.org/10.1016/j.carbpol.2009.07.001
- Lahaye, M., Rochas, C., & Yaphe, W. (1986). A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (gracilariaceae, rhodophyta). Canadian Journal of Botany, 64(3), 579–585. https://doi.org/10.1139/b86-074
- Leodido, A. C. M., Costa, L. E. C., Araujo, T. S. L., Costa, D. S., Sousa, N. A., Souza, L. K. M., Souza, L. K. M., Sousa, F. B. M., Filho, M. D. S., Vasconcelos, D. F. P., Silva, F. R. P., Nogueira, K. M., Araujo, A. R., Barros, F. C. N., Freitas, A. L. P. F., & Mederos, J. V. R. (2017). Anti-diarrhoeal therapeutic potential and safety assessment of sulphated polysaccharide fraction from Gracilaria intermedia seaweed in mice. International Journal of Biological Macromolecules, 97, 34–45. https://doi.org/10.1016/j.ijbiomac.2017.01.006
- Li, X., Peng, B., Cheung, P. c., Wang, J. C., Zheng, X. D., & You, L. J. (2022). Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocolloids, 130, 107687. https://doi.org/10.1016/j.foodhyd.2022.107687
- Li, X., Xie, Q. T., Huang, S. M., Shao, P., You, L. J., & Pedisic, S. (2021). Digestion & fermentation characteristics of sulfated polysaccharides from Gracilaria chouae using two extraction methods in vitro and in vivo. Food Research International, 145, 110406. https://doi.org/10.1016/j.foodres.2021.110406
- Lima de Castro, J. P., Castanheira Costa, L. E., Pinheiro, M. P., Francisco, T. D. S., Menezes de Vasconcelos, P. H., Funari, L. M., Daudt, R. M., dos Santos, G. R. C., Cardozo, N. S. M., & Freitas, A. L. P. (2018). Polysaccharides of red alga Gracilaria intermedia: Structure, antioxidant activity and rheological behavior. Polimeros-Ciencia E Tecnologia, 28(2), 178–186. https://doi.org/10.1590/0104-1428.013116
- Lopezbautista, J., & Kapraun, D. F. (1995). Agar annlysis, nuclear genome quantification and charaterization of 4 agarophytes (Gralilaria) from the Mexican gulf-coast. Journal of Applied Phycology, 7(4), 351–357. https://doi.org/10.1007/bf00003792
- Ma, X. T., Sun, X. Y., Yu, K., Gui, B. S., Gui, Q., & Ouyang, J. M. (2017). Effect of content of sulfate groups in seaweed polysaccharides on antioxidant activity and repair effect of subcellular organelles in injured HK-2 cells. Oxidative Medicine and Cellular Longevity, 2017, 2542950. https://doi.org/10.1155/2017/2542950
- Maciel, J. S., Chaves, L. S., Souza, B. W. S., Teixeira, D. I. A., Freitas, A. L. P., Feitosa, J. P. A., & de Paula, R. C. M. (2008). Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydrate Polymers, 71(4), 559–565. https://doi.org/10.1016/j.carbpol.2007.06.026
- Makkar, F., & Chakraborty, K. (2017). Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. International Journal of Food Properties, 20(6), 1326–1337. https://doi.org/10.1080/10942912.2016.1209216
- Marinho-Soriano, E., & Bourret, E. (2003). Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresource Technology, 90(3), 329–333. https://doi.org/10.1016/s0960-8524(03)00112-3
- Marinho-Soriano, E., & Bourret, E. (2005). Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresource Technology, 96(3), 379–382. https://doi.org/10.1016/j.biortech.2004.04.012
- Martin, L. A., Rodriguez, M. C., Matulewicz, M. C., Fissore, E. N., Gerschenson, L. N., & Leonardi, P. I. (2013). Seasonal variation in agar composition and properties from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonian coast of Argentina. Phycological Research, 61(3), 163–171. https://doi.org/10.1111/pre.12000
- Meena, R., Prasad, K., Ganesan, M., & Siddhanta, A. K. (2008). Superior quality agar from Gracilaria species (Gracilariales, Rhodophyta) collected from the Gulf of Mannar, India. Journal of Applied Phycology, 20(4), 397–402. https://doi.org/10.1007/s10811-007-9272-6
- Meena, R., Siddhanta, A. K., Prasad, K., Ramavat, B. K., Eswaran, K., Thiruppathi, S., Ganesan, M., Mantri, V. A., & Rao, P. V. S. (2007). Preparation, characterization and benchmarking of agarose from Gracilaria dura of Indian waters. Carbohydrate Polymers, 69(1), 179–188. https://doi.org/10.1016/j.carbpol.2006.09.020
- Melo, M. R. S., Feitosa, J. P. A., Freitas, A. L. P., & de Paula, R. C. M. (2002). Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers, 49(4), 491–498. https://doi.org/10.1016/S0144-8617(02)00006-1
- Meng, Q. Y., Wang, Y. F., Jie, X. M., Dongye, G. Z., & Zhang, L. J. (2006). Extraction and analysis of gracilaria gigas Harvey polysaccharides. Spectroscopy and Spectral Analysis, 26(10), 1903–1906. https://doi.org/10.1016/j.saa.2005.11.030
- Minghou, J., Lahaye, M., & Yaphe, W. (1985). Structure of agar from Gracilaria Spp (Rhodophyta) collected in the People's Republic of China. Botanica Marina, 28(12), 521–528. https://doi.org/10.1515/botm.1985.28.12.521
- Murano, E. (1995). Chemical-structure and quality of agars from Gracilaria. Journal of Applied Phycology, 7(3), 245–254. https://doi.org/10.1007/bf00003999
- Mzoughi, Z., & Majdoub, H. (2021). Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. International Journal of Biological Macromolecules, 173, 554–579. https://doi.org/10.1016/j.ijbiomac.2021.01.144
- Nishinari, K., & Fang, Y. (2017). Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. Food Structure-Netherlands, 13, 24–34. https://doi.org/10.1016/j.foostr.2016.10.003
- Oza, M. D., Mehta, G. K., Kumar, S., Meena, R., & Siddhanta, A. K. (2011). Galactans from Gracilaria millardetii and G textorii (Gracilariales, Rhodophyta) of Indian waters. Phycological Research, 59(4), 244–249. https://doi.org/10.1111/j.1440-1835.2011.00622.x
- Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy-cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 5(4), 68. https://doi.org/10.3390/cosmetics5040068
- Pereira, M. G., Benevides, N. M. B., Melo, M. R. S., Valente, A. P., Melo, F. R., & Mourao, P. A. S. (2005). Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydrate Research, 340(12), 2015–2023. https://doi.org/10.1016/j.carres.2005.05.018
- Pereira, S. G., Teixeira-Guedes, C., Souza-Matos, G., Maricato, E., Nunes, C., Coimbra, M. A., & Gabriela, S. M. (2021). Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Research-Biomass Biofuels and Bioproducts, 58, 102360. https://doi.org/10.1016/j.algal.2021.102360
- Porse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29(5), 2187–2200. https://doi.org/10.1007/s10811-017-1144-0
- Pujol, C. A., Ray, S., Ray, B., & Damonte, E. B. (2012). Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. International Journal of Biological Macromolecules, 51(4), 412–416. https://doi.org/10.1016/j.ijbiomac.2012.05.028
- Qi, H., Li, D., Zhang, J., Liu, L., & Zhang, Q. (2008). Study on extraction of agaropectin from Gelidium amansii and its anticoagulant activity. Chinese Journal of Oceanology and Limnology, 26(2), 186–189. https://doi.org/10.1007/s00343-008-0186-1
- Qi, H. M., Zhao, T. T., Zhang, Q. B., Li, Z., Zhao, Z. Q., & Xing, R. (2005). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17(6), 527–534. https://doi.org/10.1007/s10811-005-9003-9
- Ren, B., Chen, C., Li, C., Fu, X., You, L., & Liu, R. H. (2017). Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 173, 192–201. https://doi.org/10.1016/j.carbpol.2017.05.094
- Rhein-Knudsen, N., & Meyer, A. S. (2021). Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids. Trends in Food Science & Technology, 109, 608–621. https://doi.org/10.1016/j.tifs.2021.01.052
- Rioux, L.-E., Beaulieu, L., & Turgeon, S. L. (2017). Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocolloids, 68, 255–265. https://doi.org/10.1016/j.foodhyd.2017.02.005
- Rosemary, T., Arulkumar, A., Paramasivam, S., Mondragon-Portocarrero, A., & Manuel Miranda, J. (2019). Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticata. Molecules, 24(12), 2225. https://doi.org/10.3390/molecules24122225
- Rudtanatip, T., Asuvapongpatana, S., Withyachumnarnkul, B., & Wongprasert, K. (2014). Sulfated galactans isolated from the red seaweed Gracilaria fisheri target the envelope proteins of white spot syndrome virus and protect against viral infection in shrimp haemocytes. Journal of General Virology, 95, 1126–1134. https://doi.org/10.1099/vir.0.062919-0
- Rudtanatip, T., Boonsri, B., Praiboon, J., & Wongprasert, K. (2019). Bioencapsulation efficacy of sulfated galactans in adult Artemia salina for enhancing immunity in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 94, 90–98. https://doi.org/10.1016/j.fsi.2019.08.065
- Rudtanatip, T., Pariwatthanakun, C., Somintara, S., Sakaew, W., & Wongprasert, K. (2022). Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans. International Journal of Biological Macromolecules, 206, 51–63. https://doi.org/10.1016/j.ijbiomac.2022.02.125
- Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K. (2015). Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes. Fish & Shellfish Immunology, 47(1), 231–238. https://doi.org/10.1016/j.fsi.2015.09.006
- Sae-lao, T., Luplertlop, N., Janvilisri, T., Tohtong, R., Bates, D. O., & Wongprasert, K. (2017). Sulfated galactans from the red seaweed Gracilaria fisheri exerts anti-migration effect on cholangiocarcinoma cells. Phytomedicine, 36, 59–67. https://doi.org/10.1016/j.phymed.2017.09.014
- Sambhwani, K., Mathukiya, G., Dawange, P. S., Sequeira, R. A., Prasad, K., & Mantri, V. A. (2022). Analysis of functional traits in gracilaria dura (rhodophyta: gracilariacae) reveals variation in wild and farmed populations. Journal of Applied Phycology, 34(2), 1017–1031. https://doi.org/10.1007/s10811-022-02697-z
- Seedevi, P., Moovendhan, M., Viramani, S., & Shanmugam, A. (2017). Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohydrate Polymers, 155, 516–524. https://doi.org/10.1016/j.carbpol.2016.09.011
- Shi, F., Yan, X., Cheong, K. L., & Liu, Y. (2018). Extraction, purification, and characterization of polysaccharides from marine algae Gracilaria lemaneiformis with anti-tumor activity. Process Biochemistry, 73, 197–203. https://doi.org/10.1016/j.procbio.2018.08.011
- Sinaga, M. Z. E., Gea, S., Zuhra, C. F., Sihombing, Y. A., Zaidar, E., Sebayang, F., & Ningsih, T. U. (2021). The effect of plasticizers and chitosan concentration on the structure and properties of Gracilaria sp.-based thin films for food packaging purpose. Polimery, 66(2), 119–126. https://doi.org/10.14314/polimery.2021.2.5
- Sotanon, N., Saleeart, A., Rattanarojpong, T., Thanh Dong, H., Senapin, S., Wongprasert, K., Sarikavanij, S., & Khunrae, P. (2018). C-terminal domain of WSSV VP37 is responsible for shrimp haemocytes binding which can be inhibited by sulfated galactan. Fish & Shellfish Immunology, 77, 312–318. https://doi.org/10.1016/j.fsi.2018.03.043
- Sousa, A. M. M., Borges, J., Fernando Silva, A., & Goncalves, M. P. (2013). Influence of the extraction process on the rheological and structural properties of agars. Carbohydrate Polymers, 96(1), 163–171. https://doi.org/10.1016/j.carbpol.2013.03.070
- Souza, B. W. S., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287–292. https://doi.org/10.1016/j.foodhyd.2011.10.005
- Souza, R. B., Frota, A. F., Sousa, R. S., Cezario, N. A., Santos, T. B., & Souza, L. M. F. (2017). Neuroprotective effects of sulphated agaran from marine alga Gracilaria cornea in rat 6-hydroxydopamine Parkinson's disease model: Behavioural, neurochemical and transcriptional alterations. Basic & Clinical Pharmacology & Toxicology, 120(2), 159–170. https://doi.org/10.1111/bcpt.12669
- Sudharsan, S., Subhapradha, N., Seedevi, P., Shanmugam, V., Madeswaran, P., Shanmugam, A., & Srinivasan, A. (2015). Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). International Journal of Biological Macromolecules, 81, 1031–1038. https://doi.org/10.1016/j.ijbiomac.2015.09.046
- Takano, R., Hayashi, K., & Hara, S. (1995). Highly methylated agars with a high gel-melting point from the red seaweed, Gracilaria eucheumoides. Phytochemistry, 40(2), 487–490. https://doi.org/10.1016/0031-9422(95)00278-f
- Tako, M., Higa, M., Medoruma, K., & Nakasone, Y. (1999). A highly methylated agar from red seaweed, Gracilaria arcuata. Botanica Marina, 42(6), 513–517. https://doi.org/10.1515/BOT.1999.058
- Talarico, L. B., Zibetti, R. G. M., Faria, P. C. S., Scolaro, L. A., Duarte, M. E. R., Noseda, M. D., Pujol, C. A., & Damonte, E. B. (2004). Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. International Journal of Biological Macromolecules, 34(1–2), 63–71. https://doi.org/10.1016/j.ijbiomac.2004.03.002
- Torres, P., Santos, J. P., Chow, F., & dos Santos, D. Y. A. C. (2019). A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Research-Biomass Biofuels and Bioproducts, 37, 288–306. https://doi.org/10.1016/j.algal.2018.12.009
- Usov, A. I. (1992). Sulfated polysaccarides of the red seaweeds. Food Hydrocolloids, 6(1), 9–23. https://doi.org/10.1016/s0268-005x(09)80055-6
- Usov, A. I. (2011). "Chapter 4 - Polysaccharides of the red algae". In D. Horton (Ed.), Advances in carbohydrate chemistry and biochemistry (Vol. 65, pp. 115–217). Academic Press. https://doi.org/10.1016/b978-0-12-385520-6.00004-2
- Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
- Vuai, S. A. H. (2022). Characterization of agar extracted from Gracilaria species collected along Tanzanian coast. Heliyon, 8(2), e09002. https://doi.org/10.1016/j.heliyon.2022.e09002
- Vuai, S. A. H., & Mpatani, F. (2019). Optimization of agar extraction from local seaweed species, Gracilaria salicornia in Tanzania. Phycological Research, 67(4), 261–266. https://doi.org/10.1111/pre.12380
- Wongprasert, K., Rudtanatip, T., & Praiboon, J. (2014). Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSSV) in shrimp. Fish & Shellfish Immunology, 36(1), 52–60. https://doi.org/10.1016/j.fsi.2013.10.010
- Xie, X. T., Zhang, X., Liu, Y., Xian, Q. C., & Kit, L. C. (2020). Quantification of 3,6-anhydro-galactose in red seaweed polysaccharides and their potential skin-whitening activity. 3 Biotech, 10(4), 1–9. https://doi.org/10.1007/s13205-020-02175-8
- Yaphe, W., & Arsenault, G. P. (1965). Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Analytical Biochemistry, 13(1), 143–148. https://doi.org/10.1016/0003-2697(65)90128-4
- Zhang, J., Ge, C., Fang, J., & Tang, Q. (2018). Multi-trophic mariculture practicesin coastal waters. In J. -F. Gui, Q. Tang, Z. Li, J. Liu, & S. S. Silva (Eds.), Aquaculture in China: success stories and modern trends (pp. 541–554). Wiley. https://doi.org/10.1002/9781119120759.ch7_1
10.1002/9781119120759.ch7_1 Google Scholar
- Zhang, X., Liu, X., Xia, K., & Luan, J. (2014). Preparation of oxidized agar and characterization of its properties. Carbohydrate Polymers, 112, 583–586. https://doi.org/10.1016/j.carbpol.2014.06.005