H-likelihood Predictive Intervals for Unobservables
Youngjo Lee
Department of Statistics, Seoul National University, Seoul, Korea
Search for more papers by this authorGwangsu Kim
Department of Statistics, Korea University, Seoul, Korea
Search for more papers by this authorYoungjo Lee
Department of Statistics, Seoul National University, Seoul, Korea
Search for more papers by this authorGwangsu Kim
Department of Statistics, Korea University, Seoul, Korea
Search for more papers by this authorSummary
Inferences about unobserved random variables, such as future observations, random effects and latent variables, are of interest. In this paper, to make probability statements about unobserved random variables without assuming priors on fixed parameters, we propose the use of the confidence distribution for fixed parameters. We focus on their interval estimators and related probability statements. In random-effect models, intervals can be formed either for future (yet-to-be-realised) random effects or for realised values of random effects. The consistency of intervals for these two cases requires different regularity conditions. Via numerical studies, their finite sampling properties are investigated.
Supporting Information
Filename | Description |
---|---|
insr12115-sup-0001-supplementary1.pdfPDF document, 311.6 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aitchison J. & Dunsmore I. R. (1975). Statistical Prediction Analysis. Cambridge: Cambridge University Press.
- Andersen E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. J. Roy. Stat. Soc. B., 32, 283–301.
- Archer D. F.. (1987). Prolactin response to thyrotropin-releasing hormone in women with infertility and/or randomly elevated serum prolactin levels. Fertil. Steril., 47, 559–564.
- Bedrick E. I. & Hill J. R.. (1999). Properties and applications of the generalized likelihood as a summary function for prediction problems. Scand. J. Stat., 26, 593–609.
- Berger J. O., Liseo B. & Wolpert R. L.. (1999). Integrated likelihood methods for eliminating nuisance parameters. Stat. Sci., 14, 1–28.
- Birnbaum A.. (1962). On the foundations of statistical inference. J. Am. Stat. Assoc., 57, 269–306.
- Bjørnstad J. F.. (1990). Predictive likelihood: A review. Stat. Sci., 5, 242–265.
10.1214/ss/1177012175 Google Scholar
- Bjørnstad J. F.. (1996). On the generalization of the likelihood function and likelihood principle. J. Am. Stat. Assoc., 91, 791–806.
- Bjørnstad J. F.. (2010). Survey sampling: A necessary journey in the prediction world.
- Breslow N. E. & Clayton D. G.. (1993). Approximate inference in generalized linear mixed model. J. Am. Stat. Assoc., 88, 9–25.
- Butler R. W.. (1986). Predictive likelihood inference with applications. J. Roy. Stat. Soc. B., 48, 1–38.
- Davison A. C.. (1986). Approximate predictive likelihood. Biometrika, 73, 323–332.
- Dawid A. P.. (1986). Symmetry analysis of the mixed model. Research Report No. 53, Department of Statistical Science, University College London.
- Dawid A. P.. (1991). Fisherian inference in likelihood and prequential frames of reference. J. Roy. Stat. Soc. B., 53, 79–109.
- Efron B.. (2000). R.A. Fisher in 21st Century. In Statistics for the 21st Century, Eds. C.R. Rao & G.J. Szekely pp. 109-144. New York: Marce Dekker.
- Fisher R. A.. (1930). Inverse probability. Proc. Camb. Philos. Soc., 26, 528–535.
- Fraser D. A. S.. (2011). Is Bayes posterior just quick and dirty confidence? Stat. Sci., 26, 293–316.
- Fraser D. A. S. & McDunnough P.. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Stat., 12, 183–190.
10.2307/3314746 Google Scholar
- Ghosh J. K. & Ramamoorthi R. V.. (2003). Bayesian Nonparametrics. New York: Springer.
- Harris I. R.. (1989). Predictive fit for natural exponential families. Biometrika, 76, 675–684.
- Hastings W. K.. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
- Hinkley D.. (1979). Predictive likelihood. Ann. Stat., 7, 718–728.
- Lejeune M. & Faulkenberry G. D.. (1982). A simple predictive likelihood. J. Am. Stat. Assoc., 77, 654–657.
- Lee Y. & Bjørnstad J. F.. (2013). Extended likelihood approach to large-scale multiple testing. J. Roy. Stat. Soc. B., 3, 553–575.
- Lee Y. & Nelder J. A.. (1996). Hierarchical generalized linear models (with discussion). J. Roy. Stat. Soc. B., 58, 791–806.
- Lee Y. & Nelder J. A.. (2009). Likelihood inference for models with unobservables: Another view (with discussion). Stat. Sci., 24, 255–269.
- Lee Y., Nelder J. A. & Pawitan Y.. (2006). Generalized Linear Models with Random Effects, Unified Analysis Via H-likelihood. New York: Chapman & Hall/CRC.
10.1201/9781420011340 Google Scholar
- Lindley D. V. (1958). Fiducial distributions and Bayes' theorem. J. Roy. Stat. Soc. B., 20, 102–107.
- Little R. J. A. & Rubin D. B.. (2002). Statistical Analysis With Missing Data. John Wiley & Sons, Inc.: Hobeken, New jersey.
10.1002/9781119013563 Google Scholar
- Ma R. & Jøgensen B.. (2007). Nested generalized linear mixed models: An orthodox best linear unbiased predictor approach. J. Roy. Stat. Soc. B., 69, 625–641.
- Meng X. L.. (2009). Decoding the H-likelihood. Stat. Sci., 24, 280–293.
- Meng X. L.. (2010). What's the H in H-likelihood: A holy grail or an Achilles' heel? In Bayesian Statistics, Vol. 9, Eds. J.M. Bernado, M.J. Bayarri, J.O. Berger, A.P. David, D. Heckerman, A.F.M. Smith & M. West, pp. 473-500. Oxford University Press.
- Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. & Teller E.. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087.
- Neyman J.. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. Roy. Soc. A., 236, 333–380.
10.1098/rsta.1937.0005 Google Scholar
- Noh M. & Lee Y.. (2011). Double Hierarchical Generalized Linear Models (R package). Available at http://cran.r-project.org/web/packages/dhglm/ [Accessed on 30 September 2011].
- Paik M. C., Lee Y. & Ha I. D.. (2015). Frequentist inference on random effects based on summarizability. Stat. Sinica., 25, 1107–1132.
- Pawitan Y.. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Oxford University Press.
- Pearson K.. (1920). The fundamental problems of practical statistics. Biometrika, 13, 1–16.
- Rao J. N. K.. (2003). Small Area Estimation. Hobeken, New Jersey: John Wiley & Sons, Inc..
10.1002/0471722189 Google Scholar
- Robinson G. K.. (1991). That BLUP is a good thing: The estimation of random effects. Stat. Sci., 6, 15–32.
- Rubin D. B.. (2006). Matched Sampling for Casual Effects. Cambridge: Cambridge University Press.
10.1017/CBO9780511810725 Google Scholar
- Skrondal A. & Rabe-Hesketh S.. (2007). Latent variable modelling: A survey. Scand. J. Stat., 34, 712–745.
- Thall P. F. & Vail S. C.. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657–671.
- Xie M. & Singh K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review. Int. Stat. Rev., 81, 3–39.