Integrated crop-livestock versus conventional systems: Effects on the chemical and physical characteristics of an Oxisol
Jeferson Garcia Augusto
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorClaudia Cristina Paro de Paz
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorGabriela Geraldi Mendonça
Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamentode Nutrição e Produção Animal, Pirassununga, Brazil
Search for more papers by this authorCorresponding Author
Mara Regina Moitinho
School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV–UNESP), Jaboticabal, Brazil
Correspondence
Mara Regina Moitinho, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV–UNESP), Jaboticabal, SP, Brazil.
Email: [email protected]
Search for more papers by this authorLeonardo Sartori Menegatto
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorDenizart Bolonhezi
Sugarcane Research Center, Agronomic Institute of Campinas (IAC), Ribeirão Preto, Brazil
Search for more papers by this authorMárcia Saladini Vieira Salles
Instituto de Zootecnia, Ribeirão Preto, Brazil
Search for more papers by this authorFlávia Fernanda Simili
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorJeferson Garcia Augusto
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorClaudia Cristina Paro de Paz
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorGabriela Geraldi Mendonça
Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamentode Nutrição e Produção Animal, Pirassununga, Brazil
Search for more papers by this authorCorresponding Author
Mara Regina Moitinho
School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV–UNESP), Jaboticabal, Brazil
Correspondence
Mara Regina Moitinho, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV–UNESP), Jaboticabal, SP, Brazil.
Email: [email protected]
Search for more papers by this authorLeonardo Sartori Menegatto
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorDenizart Bolonhezi
Sugarcane Research Center, Agronomic Institute of Campinas (IAC), Ribeirão Preto, Brazil
Search for more papers by this authorMárcia Saladini Vieira Salles
Instituto de Zootecnia, Ribeirão Preto, Brazil
Search for more papers by this authorFlávia Fernanda Simili
Instituto de Zootecnia, Centro Avançado de Pesquisa e Desenvolvimento de Bovinos de Corte, Sertãozinho, Brazil
Search for more papers by this authorAbstract
Studies have reported improvements in soil quality in integrated crop-livestock systems (ICLS) when compared to conventional systems. The hypothesis of this study was that ICLS improve Oxisol quality due to the use of intercropping, adding pasture and cattle to the systems. The aim of the study was to evaluate the chemical and physical characteristics of an Oxisol and pasture production in the integrated system versus conventional system. We compared two conventional systems: crop system (maize grain production) and livestock system (beef cattle on single pasture) and, four ICLS: maize plus Marandu palisade grass sown simultaneously without herbicide (ICLS-1); maize plus Marandu palisade grass sown simultaneously with herbicide (ICLS-2); maize plus Marandu palisade grass in lagged sowing (ICLS-3); and maize plus Marandu palisade grass sown simultaneously in maize rows and inter-rows with herbicide (ICLS-4). A randomized block design with six treatments and three replicates was used. The results suggest improvements in soil quality, including soil organic carbon (ICLS-4), total nitrogen, and nitrogen stocks (ICLS-1, ICLS-2, and ICLS-4). The intercropping technique influenced pasture production and soil quality during the implementation of integrated systems. The lowest soil strength was obtained for the crop system compared to systems with grazing animals but there were no changes in the soil physical characteristics that could compromise the production system.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
All datasets were generated and analyzed in the current study.
REFERENCES
- Ambus, J. V., Reichert, J. M., Gubiani, P. I., & Carvalho, P. C. F. (2018). Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma, 330, 232–243.
- AOAC. (1990). Official Methods of analysis of AOAC international ( 15th ed.). Association of Official Analytical Chemists.
- Batista, K., Giacomini, A. A., Gerdes, L., Mattos, W. T., & Otsuk, I. P. (2019). Nitrogen fertilisation improves the grain production efficiency and sustainability of out-of-season corn and congo grass intercropping. Soil Research, 57, 397–407. https://doi.org/10.1071/SR19002
- Bieluczyk, W., Pereira, M. G., Guareschi, R. F., Bonetti, J. A., Freó, V. A., & Silva Neto, E. C. (2017). Granulometric and oxidizable carbon fractions of soil organic matter in crop-livestock integration systems. Ciências Agrárias., 38, 607–622. https://doi.org/10.5433/1679-0359.2017v38n2p607
- Bonetti, J. A., Anghinoni, I., Gubianim, P. I., Cegano, D., & Moraes, M. T. (2019). Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil and Tillage Research, 186, 280–291. https://doi.org/10.1016/j.still.2018.11.003
- Bonetti, J. A., Anghinoni, I., Moraes, M. T., & Fink, J. R. J. (2017). Resilience of soils with different texture, mineralogy and organic matter under long-term conservation systems. Soil and Tillage Research, 174, 104–112. https://doi.org/10.1016/j.still.2017.06.008
- Butterly, C. R., Kaudal, B. B., Baldock, A., & Tang, C. (2011). Contribution of soluble and insoluble fractions of agricultural residues to short-term pH changes. European Journal of Soil Science., 62, 718–727. https://doi.org/10.1111/j.1365-2389.2011.01387.x
- Carvalho, J. L. N., Cerri, C. E. P., Feigel, B. J., Piccolo, M. C., Godinho, V. P., & Cerri, C. C. (2009). Carbon sequestration in agricultural soils in the Cerrado region of the Brazil Amazon. Soil and Tillage Research, 103, 342–349. https://doi.org/10.1016/j.still.2008.10.022
- Cattle, S. R., & Southorn, N. J. (2010). Macroporosity of pasture topsoils after three years of set-stocked and rotational grazing by sheep. Australian Journal of Soil Research., 48, 43–57. https://doi.org/10.1071/SR09004
10.1071/SR09004 Google Scholar
- Crusciol, C. A. C., Marques, R. T., Filho, A. C. A. C., Soratto, R. P., Costa, C. H. M., Neto, J. F., Castro, G. S. A., Pariz, C. M., & Castilhos, A. M. (2016). Annual crop rotation of tropical pastures with no-till soil as affected by lime surface application. European Journal of Agronomy, 80, 88–104. https://doi.org/10.1016/j.eja.2016.07.002
- Deiss, L., Moraes, A., Dieckow, J., Franzluebbers, A. J., Gatiboni, L. G., Sassaki, G. L., & Carvalho, P. C. F. (2016). Soil phosphorus compounds in integrated crop-livestock systems of subtropical Brazil. Geoderma, 274, 88–96. https://doi.org/10.1016/j.geoderma.2016.03.028
- Dubeux, J. C. B., Sollenberger, L. E., Gaston, L. A., Vendramini, J. M. B., Interrante, S. M., & Stewart, R. L. (2009). Animal behavior and soil nutrient redistribution in continuously stocked pensacola bahiagrass pastures managed at different intensities. Crop Science, 49, 1503–1510. https://doi.org/10.2135/cropsci2008.08.0509
- Dupont, D. T., Beniston, J., Glover, J. D., Hodson, A., Culman, S. W., Lal, R., & Ferris, H. (2014). Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant and Soil, 381, 405–420. https://doi.org/10.1007/s11104-014-2145-2
- Fernández, P. L., Alvarez, C. R., & Taboada, M. A. (2010). Assessment of topsoil properties in integrated crop–livestock and continuous cropping systems under zero tillage. Soil Research, 49, 143–151. https://doi.org/10.1071/SR10086
- Fernández, P. L., Alvarez, C. R., Taboada, M. A. (2015). Topsoil compaction and recovery in integrated no-tilledcrop-livestock systems of Argentina. Soil and Tillage Research, 153, 86–94.
- Foley, J. A., Ramankutty, N., Brauman, K., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. https://doi.org/10.1038/nature10452
- Garcia, R. R., Crusciol, C. A. C., Calonego, J. C., & Roselem, C. A. (2008). Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy, 28, 579–585. https://doi.org/10.1016/j.eja.2008.01.002
- Lemaire, G., Franzluebbers, A., Carvalho, P. C. F., & Dedieu, B. (2014). Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment., 190, 4–8. https://doi.org/10.1016/j.agee.2013.08.009
- Liu, D. L., O'Leary, G. J., Cowie, M. Y., Li, F. Y., McCaskill, M., Conyers, M., Dalal, R., Robertson, F., & Dougherty, W. (2016). Modelling soil organic carbon 2: Changes under a range of cropping and grazing farming systems in eastern Australia. Geoderma, 265, 164–175. https://doi.org/10.1016/j.geoderma.2015.11.005
- Loss, A., Pereira, M. G., Perin, A., Coutinho, F. S., & Anjos, L. H. C. (2012). Particulate organic matter in soil under different management systems in the Brazilian Cerrado. Soil Research, 50, 685–693. https://doi.org/10.1071/SR12196
- Ma, Q., Wen, Y., Wang, D., Sun, X., Hill, P. W., Macdonald, A., Chadwick, D. R., Wu, D., & Jones, D. L. (2020). Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biology and Biochemistry, 144, 107760. https://doi.org/10.1016/j.soilbio.2020.107760
- Maia, N. J. C., Cruz, M. C. P., Dubeux Junior, J. C. B., Menegatto, L. S., Augusto, J. G., Mendonça, G. G., Terçariol, M. C., Oliveira, J. G., & Simili, F. F. (2021). Integrated crop-livestock versus conventional systems: Use of soil indicators to detect short-term changes during seasonal variation. Bragantia, 80, e5821. https://doi.org/10.1590/1678-4499.20210127
- Mendonça, G. G., Simili, F. F., Augusto, J. G., Bonacim, P. M., Menegatto, L. S., & Gameiro, A. H. (2020). Economic gains from crop-livestock integration in relation to conventional systems. Revista Brasileira de Zootecnia, 49, e20190029. https://doi.org/10.37496/rbz4920190029
- Moraes, M. T., Debiasi, H., Carlesso, R., Franchini, J. C., & Silva, V. R. (2014). Critical limits of soil penetrations resistance in a Rhodic Eutrudox. Revista Brasileira de Ciência Do Solo, 38, 288–298. https://doi.org/10.1590/S0100-06832014000100029
- Moraine, M., Grimaldi, J., Murgue, C., Duru, M., & Therond, O. (2016). Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level. Agriculture System, 147, 87–97. https://doi.org/10.1016/j.agsy.2016.06.002
- Mott G. O. (1960) Grazing pressure and the measurement of pasture production. In C. L. Skidmore, P. J. Boyle, & L. W. Raymond (Eds.), Proceedings 8th International Grassland Congress, Reading, UK (pp. 606–611). Alden Press.
- Nivelle, E., Verzeaux, J., Habbib, H., Kuzyakov, Y., Decocq, G., Roger, D., Lacoux, J., Duclercq, J., Spicher, F., Nava-Saucedo, J., Catterou, M., Dubois, F., & Tetua, T. (2016). Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Applied Soil Ecology, 108, 147–155. https://doi.org/10.1016/j.apsoil.2016.08.004
- Oliveira, J. G., Santana Júnior, M. L., Maia, N. J. C., Dubeux Junior, J. C. B., Gameiro, A. H., Kunrath, T. R., Mendonça, G. G., & Simili, F. F. (2022). Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems. Scientific Reports, 12, 12021.
- Olowoboko, T. B., Azeez, J. O., Olujimi, O. O., & Babalola, O. A. (2018). Availability and dynamics of organic carbon and nitrogen indices in some soils amended with animal manures and ashes. International Journal of Recycling of Organic Waste in Agriculture., 7, 287–304. https://doi.org/10.1007/s40093-018-0215-9
10.1007/s40093-018-0215-9 Google Scholar
- Órdoñez, R. A., Castellano, M. J., Hatfield, J. L., Helmers, M. J., Licht, M. A., Liebman, M., Dietzel, R., Martinez-Feria, R., Iqbal, J., Puntel, L. A., Córdova, S. C., Togliatti, K., Wrigth, E., & Archontoulis, S. V. (2018). Maize and soybean root front velocity and maximum depth in Iowa, USA. Field Crops Research, 215, 122–131. https://doi.org/10.1016/j.fcr.2017.09.003
- Prajapati, K., & Modi, H. A. (2012). The importance of potassium in plant growth - a review. Indian Journal Plant Science, 1, 177–186. https://www.researchgate.net/publication/304246278
- Prathumchai, N., Polprasert, C., & Englande, A. J. (2018). Phosphorus distribution and loss in the livestock sector – The case of Thailand. Resources, Conservation and Recycling, 136, 257–266. https://doi.org/10.1016/j.resconrec.2018.04.027
- Raij, B. V. (1983). Avaliação da Fertilidade do solo ( 2nd ed.). Instituto Agronômico do Estado de São Paulo.
- Raij, B. V., Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solos tropicais (p. 284). Campinas.
- Raij, B. V., Cantarella, H., Quaggio, J. A., & Furlani, A. M. C. (1997). Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico/Fundação, IAC.
- Rakkar, M. K., & Blanco-Canqui, H. (2018). Grazing of crop: Impacts on soils and crop production. Agriculture, Ecosystems and Environment, 258, 71–90. https://doi.org/10.1016/j.agee.2017.11.018
- Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Filho, J. C. A., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos – Embrapa ( 5th ed., p. 353). Embrapa Solos.
- Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156, 997–1005. https://doi.org/10.1104/pp.111.175232
- Silva, H. A., Moraes, A., Carvalho, P. C. F., Fonseca, A. F., Caires, E. F., & Dias, C. T. S. (2014). Chemical and physical soil attributes in integrated crop-livestock system under no-tillage. Revista de Ciências Agroveterinárias., 45, 946–955. https://doi.org/10.1590/S1806-66902014000500010
10.1590/S1806-66902014000500010 Google Scholar
- Simili, F. F., Mendonça, G. G., Gameiro, A. H., Augusto, J. G., Oliveira, J. G., Menegatto, L. S., & Santos, D. F. L. (2023). The economic value of sustainability of the integrated crop-livestock system in relation to conventional systems. Brazilian Journal of Animal Science, 52, e20220052.
- Soil Survey Staff. (2014). Keys to soil taxonomy. Soil conservation service ( 12th ed.). USDA-Natural Resources Conservation Service.
- Sulc, R. M., & Tracy, B. F. (2007). Integrated crop–livestock systems in the U.S. Corn Belt. Agronomy Journal, 99, 335–345. https://doi.org/10.2134/agronj2006.0086
- Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. UFRGS Boletim Técnico 5.
- Tracy, B. F., & Frank, D. A. (1998). Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia, 114, 556–562.
- Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58, 175–180.
- Viaud, V., Santillàn-Carvantes, P., Akkal-Corfini, N., Guillou, C. L., Prévost-Bouré, N. C., Ranjard, L., & Menasseri-Aubry, S. (2018). Landscape-scale analysis of cropping system effects on soil quality in a context of crop-livestock farming. Agriculture, Ecosystems and Environment., 265, 166–177. https://doi.org/10.1016/j.agee.2018.06.018
- Yanni, S. F., Whalen, J. K., Simpson, M. J., & Janzen, H. H. (2011). Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues. Soil Biology and Biochemistry Biochem., 43, 63–69. https://doi.org/10.1016/j.soilbio.2010.09.012
- Zhou, Y., Ding, Y., Li, H., Xu, X., Li, Y., Zhang, W., & Lin, H. (2020). The effects of short-term grazing on plant and soil carbon and nitrogen isotope composition in a temperate grassland. Journal of Arid Environments, 179, 104198. https://doi.org/10.1016/j.jaridenv.2020.104198