Crisaborole efficacy in murine models of skin inflammation and Staphylococcus aureus infection
Christine Youn
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorDustin A. Dikeman
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorEvelyn Chang
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorHaiyun Liu
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorSabrina J. Nolan
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorMartin P. Alphonse
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorDaniel P. Joyce
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorQi Liu
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorJames Meixiong
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorXinzhong Dong
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorLloyd S. Miller
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorCorresponding Author
Nathan K. Archer
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Correspondence
Nathan K. Archer, PhD, Johns Hopkins Department of Dermatology Cancer Research Building II, Suite 2M04 1550 Orleans Street Baltimore, MD 21231 USA.
Email: [email protected]
Search for more papers by this authorChristine Youn
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorDustin A. Dikeman
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorEvelyn Chang
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorHaiyun Liu
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorSabrina J. Nolan
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorMartin P. Alphonse
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorDaniel P. Joyce
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorQi Liu
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorJames Meixiong
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorXinzhong Dong
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorLloyd S. Miller
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Search for more papers by this authorCorresponding Author
Nathan K. Archer
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Correspondence
Nathan K. Archer, PhD, Johns Hopkins Department of Dermatology Cancer Research Building II, Suite 2M04 1550 Orleans Street Baltimore, MD 21231 USA.
Email: [email protected]
Search for more papers by this authorAbstract
Phosphodiesterase 4 (PDE4) is highly expressed in keratinocytes and immune cells and promotes pro-inflammatory responses upon activation. The activity of PDE4 has been attributed to various inflammatory conditions, leading to the development and approval of PDE4 inhibitors as host-directed therapeutics in humans. For example, the topical PDE4 inhibitor, crisaborole, is approved for the treatment of mild-to-moderate atopic dermatitis and has shown efficacy in patients with psoriasis. However, the role of crisaborole in regulating the immunopathogenesis of inflammatory skin diseases and infection is not entirely known. Therefore, we evaluated the effects of crisaborole in multiple mouse models, including psoriasis-like dermatitis, AD-like skin inflammation with and without filaggrin mutations, and Staphylococcus aureus skin infection. We discovered that crisaborole dampens myeloid cells and itch in the skin during psoriasis-like dermatitis. Furthermore, crisaborole was effective in reducing skin inflammation in the context of filaggrin deficiency. Importantly, crisaborole reduced S. aureus skin colonization during AD-like skin inflammation. However, crisaborole was not efficacious in treating S. aureus skin infections, even as adjunctive therapy to antibiotics. Taken together, we found that crisaborole reduced itch during psoriasis-like dermatitis and decreased S. aureus skin colonization upon AD-like skin inflammation, which act as additional mechanisms by which crisaborole dampens the immunopathogenesis in mouse models of inflammatory skin diseases. Further examination is warranted to translate these preclinical findings to human disease.
CONFLICT OF INTEREST
LSM is a full-time employee of Janssen Pharmaceuticals and holds Johnson & Johnson stock. LSM performed all work at his previous affiliation at Johns Hopkins University School of Medicine and has received previous grant support from AstraZeneca, Pfizer, Boehringer Ingelheim, Regeneron Pharmaceuticals, and Moderna Therapeutics; was a paid consultant for Almirall and Janssen Research and Development; was on the scientific advisory board of Integrated Biotherapeutics; and is a shareholder of Noveome Biotherapeutics, which are all developing therapeutics against infections (including Staphylococcus aureus and other pathogens) and/or inflammatory conditions. XD is a co-founder and a scientific advisory board member of Escient Pharmaceuticals, a company focussed on developing small molecules targeting MRGPRs. NKA has received previous grant support from Pfizer and Boehringer Ingelheim; and was a paid consultant for Janssen Pharmaceuticals. The remaining authors state no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
exd14722-sup-0001-FigureS1.docxWord 2007 document , 533.3 KB |
Figure S1. Flow cytometric gating strategy from a vehicle-treated mouse. Representative flow cytometric gating strategy of live myeloid immune cells (CD45+CD11b+) cells for identification of eosinophils (Siglec-F+), monocytes (Ly6GloLy6Chi), neutrophils (Ly6GhiLy6Clo) and macrophages (CD115+F4/80+). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Chiricozzi A, Caposiena D, Garofalo V, Cannizzaro MV, Chimenti S, Saraceno R. A new therapeutic for the treatment of moderate-to-severe plaque psoriasis: apremilast. Expert Rev Clin Immunol. 2016; 12(3): 237-249. doi:10.1586/1744666X.2016.1134319
- 2Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018; 9: 1048. doi:10.3389/fphar.2018.01048
- 3Guttman-Yassky E, Hanifin JM, Boguniewicz M, et al. The role of phosphodiesterase 4 in the pathophysiology of atopic dermatitis and the perspective for its inhibition. Exp Dermatol. 2019; 28(1): 3-10. doi:10.1111/exd.13808
- 4Milakovic M, Gooderham MJ. Phosphodiesterase-4 inhibition in psoriasis. Psoriasis (Auckl). 2021; 11: 21-29. doi:10.2147/PTT.S303634
- 5Phillips JE. Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front Pharmacol. 2020; 11: 259. doi:10.3389/fphar.2020.00259
- 6Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014; 13(4): 290-314. doi:10.1038/nrd4228
- 7Kailas A. Crisaborole: a new and effective nonsteroidal topical drug for atopic dermatitis. Dermatol Ther. 2017; 30(5):e12533. doi:10.1111/dth.12533
- 8Paton DM. Crisaborole: phosphodiesterase inhibitor for treatment of atopic dermatitis. Drugs Today (Barc). 2017; 53(4): 239-245. doi:10.1358/dot.2017.53.4.2604174
- 9Deeks ED. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs. 2015; 75(12): 1393-1403. doi:10.1007/s40265-015-0439-1
- 10Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis. 2017; 9(4): 1144-1154. doi:10.21037/jtd.2017.03.116
- 11Bissonnette R, Pavel AB, Diaz A, et al. Crisaborole and atopic dermatitis skin biomarkers: an intrapatient randomized trial. J Allergy Clin Immunol. 2019; 144(5): 1274-1289. doi:10.1016/j.jaci.2019.06.047
- 12Yosipovitch G, Gold LF, Lebwohl MG, Silverberg JI, Tallman AM, Zane LT. Early relief of pruritus in atopic dermatitis with Crisaborole ointment, a non-steroidal, phosphodiesterase 4 inhibitor. Acta Derm Venereol. 2018; 98(5): 484-489. doi:10.2340/00015555-2893
- 13Paller AS, Tom WL, Lebwohl MG, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016; 75(3): 494-503.e6. doi:10.1016/j.jaad.2016.05.046
- 14Hashim PW, Chima M, Kim HJ, et al. Crisaborole 2% ointment for the treatment of intertriginous, anogenital, and facial psoriasis: a double-blind, randomized, vehicle-controlled trial. J Am Acad Dermatol. 2020; 82(2): 360-365. doi:10.1016/j.jaad.2019.06.1288
- 15Baurecht H, Rühlemann MC, Rodríguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018; 141(5): 1668-1676.e16. doi:10.1016/j.jaci.2018.01.019
- 16Cole C, Kroboth K, Schurch NJ, et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J Allergy Clin Immunol. 2014; 134(1): 82-91. doi:10.1016/j.jaci.2014.04.021
- 17Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019; 143(1): 1-11. doi:10.1016/j.jaci.2018.10.032
- 18Tavares LP, Garcia CC, Vago JP, et al. Inhibition of Phosphodiesterase-4 during pneumococcal pneumonia reduces inflammation and lung injury in mice. Am J Respir Cell Mol Biol. 2016; 55(1): 24-34. doi:10.1165/rcmb.2015-0083OC
- 19Subbian S, Tsenova L, Holloway J, et al. Adjunctive Phosphodiesterase-4 inhibitor therapy improves antibiotic response to pulmonary tuberculosis in a rabbit model. EBioMedicine. 2016; 4: 104-114. doi:10.1016/j.ebiom.2016.01.015
- 20Maiga MC, Ahidjo BA, Maiga M, Bishai WR. Roflumilast, a type 4 phosphodiesterase inhibitor, shows promising adjunctive, host-directed therapeutic activity in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2015; 59(12): 7888-7890. doi:10.1128/AAC.02145-15
- 21Sartelli M, Guirao X, Hardcastle TC, et al. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018; 13: 58. doi:10.1186/s13017-018-0219-9
- 22Ray GT, Suaya JA, Baxter R. Microbiology of skin and soft tissue infections in the age of community-acquired methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2013; 76(1): 24-30. doi:10.1016/j.diagmicrobio.2013.02.020
- 23Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012; 22(5): 850-859. doi:10.1101/gr.131029.111
- 24Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun. 2000; 68(6): 3594-3600. doi:10.1128/IAI.68.6.3594-3600.2000
- 25Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence. 2018; 9(1): 28-63. doi:10.1080/21505594.2017.1371897
- 26Liu H, Archer NK, Dillen CA, et al. Staphylococcus aureus Epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017; 22(5): 653-666.e5. doi:10.1016/j.chom.2017.10.006
- 27Plaut RD, Mocca CP, Prabhakara R, Merkel TJ, Stibitz S. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. PLoS One. 2013; 8(3):e59232. doi:10.1371/journal.pone.0059232
- 28Archer NK, Jo JH, Lee SK, et al. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J Allergy Clin Immunol. 2019; 143(4): 1426-1443.e6. doi:10.1016/j.jaci.2018.08.042
- 29Ravipati A, Nolan S, Alphonse M, et al. IL-6R/STAT3-signaling in keratinocytes rather than T cells induces psoriasis-like dermatitis in mice. J Invest Dermatol. 2021; 142: 1126-1135.e4. doi:10.1016/j.jid.2021.09.012
- 30Patrick GJ, Liu H, Alphonse MP, et al. Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease. J Clin Invest. 2021; 131(5):e143334. doi:10.1172/JCI143334
- 31Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte Alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017; 22(5): 667-677.e5. doi:10.1016/j.chom.2017.10.008
- 32Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013; 503(7476): 397-401. doi:10.1038/nature12655
- 33Dillen CA, Pinsker BL, Marusina AI, et al. Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection. J Clin Invest. 2018; 128(3): 1026-1042. doi:10.1172/JCI96481
- 34Marchitto MC, Dillen CA, Liu H, et al. Clonal Vgamma6+Vdelta4+ T cells promote IL-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A. 2019; 116(22): 10917-10926. doi:10.1073/pnas.1818256116
- 35Guo Y, Ramos RI, Cho JS, Donegan NP, Cheung AL, Miller LS. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice. Antimicrob Agents Chemother. 2013; 57(2): 855-863. doi:10.1128/AAC.01003-12
- 36Hegde SS, Reyes N, Skinner R, Difuntorum S. Efficacy of telavancin in a murine model of pneumonia induced by methicillin-susceptible Staphylococcus aureus. J Antimicrob Chemother. 2008; 61(1): 169-172. doi:10.1093/jac/dkm417
- 37Sakai K, Sanders KM, Youssef MR, et al. Mouse model of imiquimod-induced psoriatic itch. Pain. 2016; 157(11): 2536-2543. doi:10.1097/j.pain.0000000000000674
- 38Han L, Ma C, Liu Q, et al. A subpopulation of nociceptors specifically linked to itch. Nat Neurosci. 2013; 16(2): 174-182. doi:10.1038/nn.3289
- 39Swindell WR, Michaels KA, Sutter AJ, et al. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med. 2017; 9(1): 24. doi:10.1186/s13073-017-0415-3
- 40van der Fits L, Mourits S, Voerman JS, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009; 182(9): 5836-5845. doi:10.4049/jimmunol.0802999
- 41Amberg N, Holcmann M, Stulnig G, Sibilia M. Effects of Imiquimod on hair follicle stem cells and hair cycle progression. J Invest Dermatol. 2016; 136(11): 2140-2149. doi:10.1016/j.jid.2016.06.613
- 42Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes. J Invest Dermatol. 2019; 139(5): 1110-1117. doi:10.1016/j.jid.2019.01.006
- 43Ayasse MT, Buddenkotte J, Alam M, Steinhoff M. Role of neuroimmune circuits and pruritus in psoriasis. Exp Dermatol. 2020; 29(4): 414-426. doi:10.1111/exd.14071
- 44Hill DA, Spergel JM. The atopic march: critical evidence and clinical relevance. Ann Allergy Asthma Immunol. 2018; 120(2): 131-137. doi:10.1016/j.anai.2017.10.037
- 45Dainichi T, Kitoh A, Otsuka A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 2018; 19(12): 1286-1298. doi:10.1038/s41590-018-0256-2
- 46Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016; 136(11): 2192-2200. doi:10.1016/j.jid.2016.05.127
- 47Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018; 4(1): 1. doi:10.1038/s41572-018-0001-z
- 48Wang V, Boguniewicz J, Boguniewicz M, Ong PY. The infectious complications of atopic dermatitis. Ann Allergy Asthma Immunol. 2021; 126(1): 3-12. doi:10.1016/j.anai.2020.08.002
- 49Matsumoto M, Nakagawa S, Zhang L, et al. Interaction between staphylococcus Agr virulence and neutrophils regulates pathogen expansion in the skin. Cell Host Microbe. 2021; 29(6): 930-940.e4. doi:10.1016/j.chom.2021.03.007
- 50Maiga M, Ammerman NC, Maiga MC, et al. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment. J Infect Dis. 2013; 208(3): 512-519. doi:10.1093/infdis/jit187
- 51Subbian S, Koo MS, Tsenova L, et al. Pharmacologic inhibition of host Phosphodiesterase-4 improves isoniazid-mediated clearance of mycobacterium tuberculosis. Front Immunol. 2016; 7: 238. doi:10.3389/fimmu.2016.00238
- 52Sobell JM, Foley P, Toth D, et al. Effects of Apremilast on pruritus and skin discomfort/pain correlate with improvements in quality of life in patients with moderate to severe plaque psoriasis. Acta Derm Venereol. 2016; 96(4): 514-520. doi:10.2340/00015555-2360
- 53Van Voorhees AS, Stein Gold L, Lebwohl M, et al. Efficacy and safety of apremilast in patients with moderate to severe plaque psoriasis of the scalp: results of a phase 3b, multicenter, randomized, placebo-controlled, double-blind study. J Am Acad Dermatol. 2020; 83(1): 96-103. doi:10.1016/j.jaad.2020.01.072
- 54Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in psoriasis. Front Immunol. 2019; 10: 2376. doi:10.3389/fimmu.2019.02376
- 55Wang Y, Edelmayer R, Wetter J, et al. Monocytes/macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation. Sci Rep. 2019; 9(1): 5310. doi:10.1038/s41598-019-41655-7
- 56Maier C, Ramming A, Bergmann C, et al. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann Rheum Dis. 2017; 76(6): 1133-1141. doi:10.1136/annrheumdis-2016-210189
- 57Sakai KP, Sanders KMP, Pavlenko DMS, Lozada T, Akiyama TP. Crisaborole prevents infiltration of neutrophils to suppress itch in a mouse model of atopic dermatitis. [Report]. Itch. 2021; 6(2):e53. doi:10.1097/itx.0000000000000053
10.1097/itx.0000000000000053 Google Scholar
- 58 The Lancet Psychiatry. Of mice and mental health. Lancet Psychiatry. 2019; 6(11): 877. doi:10.1016/S2215-0366(19)30407-9
- 59Walsh CM, Hill RZ, Schwendinger-Schreck J, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. 2019; 8:e48448. doi:10.7554/eLife.48448
- 60Kezic S, O'Regan GM, Lutter R, et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012; 129(4): 1031-9.e1. doi:10.1016/j.jaci.2011.12.989
- 61Hunt DWC, Ivanova IA, Dagnino L. DRM02, a novel phosphodiesterase-4 inhibitor with cutaneous anti-inflammatory activity. Tissue Barriers. 2020; 8(3):1765633. doi:10.1080/21688370.2020.1765633
- 62Callewaert C, Nakatsuji T, Knight R, et al. IL-4Rα blockade by Dupilumab decreases Staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J Invest Dermatol. 2020; 140(1): 191-202.e7. doi:10.1016/j.jid.2019.05.024
- 63Gerber PA, Buhren BA, Schrumpf H, Homey B, Zlotnik A, Hevezi P. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes. Biol Chem. 2014; 395(6): 577-591. doi:10.1515/hsz-2013-0279
- 64Schafer PH, Parton A, Gandhi AK, et al. Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol. 2010; 159(4): 842-855. doi:10.1111/j.1476-5381.2009.00559.x
- 65Hawkes JE, Gudjonsson JE, Ward NL. The snowballing literature on Imiquimod-induced skin inflammation in mice: a critical appraisal. J Invest Dermatol. 2017; 137(3): 546-549. doi:10.1016/j.jid.2016.10.024
- 66Raap U, Weißmantel S, Gehring M, Eisenberg AM, Kapp A, Fölster-Holst R. IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. Pediatr Allergy Immunol. 2012; 23(3): 285-288. doi:10.1111/j.1399-3038.2011.01241.x
- 67Neis MM, Peters B, Dreuw A, et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol. 2006; 118(4): 930-937. doi:10.1016/j.jaci.2006.07.015
- 68Bodoor K, Al-Qarqaz F, Heis LA, et al. IL-33/13 Axis and IL-4/31 Axis play distinct roles in inflammatory process and itch in psoriasis and atopic dermatitis. Clin Cosmet Investig Dermatol. 2020; 13: 419-424. doi:10.2147/CCID.S257647
- 69Chaowattanapanit S, Choonhakarn C, Salao K, et al. Increased serum IL-31 levels in chronic spontaneous urticaria and psoriasis with pruritic symptoms. Heliyon. 2020; 6(12):e05621. doi:10.1016/j.heliyon.2020.e05621
- 70Simpson EL, Yosipovitch G, Bushmakin AG, et al. Direct and indirect effects of Crisaborole ointment on quality of life in patients with atopic dermatitis: a mediation analysis. Acta Derm Venereol. 2019; 99(9): 756-761. doi:10.2340/00015555-3181