Estimating Garment Patterns from Static Scan Data
Seungbae Bang
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorMaria Korosteleva
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorCorresponding Author
Sung-Hee Lee
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorSeungbae Bang
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorMaria Korosteleva
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorCorresponding Author
Sung-Hee Lee
Korea Advanced Institute of Science and Technology (KAIST), Korea
Search for more papers by this authorAbstract
The acquisition of highly detailed static 3D scan data for people in clothing is becoming widely available. Since 3D scan data is given as a single mesh without semantic separation, in order to animate the data, it is necessary to model shape and deformation behaviour of individual body and garment parts. This paper presents a new method for generating simulation-ready garment models from 3D static scan data of clothed humans. A key contribution of our method is a novel approach to segmenting garments by finding optimal boundaries between the skin and garment. Our boundary-based garment segmentation method allows for stable and smooth separation of garments by using an implicit representation of the boundary and its optimization strategy. In addition, we present a novel framework to construct a 2D pattern from the segmented garment and place it around the body for a draping simulation. The effectiveness of our method is validated by generating garment patterns for a number of scan data.
Supporting Information
Filename | Description |
---|---|
cgf14272-sup-0001-scan2cloth-demo.mp44.7 MB | Video S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- [AMO] Agarwal S., Mierle K., Others: Ceres solver. http://ceres-solver.org.
- [BA05] Bærentzen J. A., Aanæs H.: Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3 (5 2005), 243–253.
- [BKL*16] Bogo F., Kanazawa A., Lassner C., Gehler P., Romero J., Black M. J.: Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In European Conference on Computer Vision (2016), Springer, pp. 561–578.
10.1007/978-3-319-46454-1_34 Google Scholar
- [BSBC12] Brouet R., Sheffer A., Boissieux L., Cani M.-P.: Design preserving garment transfer. ACM Transactions on Graphics (TOG) 31, 4 (7 2012), 1–11.
- [BTTPM19] Bhatnagar B. L., Tiwari G., Theobalt C., Pons-Moll G.: Multi-garment net: Learning to dress 3D people from images. In Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 5420–5430.
- [CHS*19] Cao Z., Hidalgo G., Simon T., Wei S.-E., Sheikh Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 1 (2019), 172–186.
- [CKI*06] Cho Y., Komatsu T., Inui S., Takatera M., Shimizu Y., Park H.: Individual Pattern Making Using Computerized Draping Method for Clothing. Textile Research Journal 76, 8 (8 2006), 646–654.
- [CZL*15] Chen X., Zhou B., Lu F., Wang L., Bi L., Tan P.: Garment modeling with a depth camera. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–12.
- [DJW*06] Decaudin P., Julius D., Wither J., Boissieux L., Sheffer A., Cani M. P.: Virtual garments: A fully geometric approach for clothing design. Computer Graphics Forum 25, 3 (2006), 625–634.
- [GLL*18] Gong K., Liang X., Li Y., Chen Y., Yang M., Lin L.: Instance-level human parsing via part grouping network. In Proceedings of the European Conference on Computer Vision (ECCV) (Munich, Germany, 2018), pp. 770–785.
10.1007/978-3-030-01225-0_47 Google Scholar
- [J*18] Jacobson A., et al.: gptoolbox: Geometry processing toolbox. ONLINE: http://github.com/alecjacobson/gptoolbox (2018).
- [JHK06] Jeong Y., Hong K., Kim S. J.: 3D pattern construction and its application to tight-fitting garments for comfortable pressure sensation. Fibers and Polymers 7, 2 (6 2006), 195–202.
- [JHK15] Jeong M.-H., Han D.-H., Ko H.-S.: Garment capture from a photograph. Computer Animation and Virtual Worlds, 26 (2015), 291–300.
- [JP*18] Jacobson A., Panozzo D., et al.: libigl: A simple C++ geometry processing library, 2018. https://libigl.github.io/.
- [JTSZ10] Jacobson A., Tosun E., Sorkine O., Zorin D.: Mixed finite elements for variational surface modeling. In Computer graphics forum (2010), vol. 29, Wiley Online Library, pp. 1565–1574.
10.1111/j.1467-8659.2010.01765.x Google Scholar
- [KBJM18] Kanazawa A., Black M. J., Jacobs D. W., Malik J.: End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, 2018), pp. 7122–7131.
10.1109/CVPR.2018.00744 Google Scholar
- [KJLH10] Kim S., Jeong Y., Lee Y., Hong K.: 3D pattern development of tight-fitting dress for an asymmetrical female manikin. Fibers and Polymers 11, 1 (3 2010), 142–146.
- [KK00] Kang T. J., Kim S. M.: Optimized garment pattern generation based on three-dimensional anthropometric measurement. International Journal of Clothing Science and Technology 12, 4 (2000), 240–254.
10.1108/09556220010373043 Google Scholar
- [KS98] Kimmel R., Sethian J. A.: Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences 95, 15 (1998), 8431–8435.
- [LGSL19] Liang X., Gong K., Shen X., Lin L.: Look into Person: Joint Body Parsing & Pose Estimation Network and a New Benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 4 (4 2019), 871–885.
- [LMR*15] Loper M., Mahmood N., Romero J., Pons-Moll G., Black M. J.: SMPL: A skinned multi-person linear model. ACM Transactions on Graphics (TOG) 34, 6 (2015), 248.
- [LZB*18] Liu K., Zeng X., Bruniaux P., Tao X., Yao X., Li V., Wang J.: 3D interactive garment pattern-making technology. Computer Aided Design 104 (11 2018), 113–124.
- [Man20] Manu: https://www.mathworks.com/matlabcentral/fileexchange/41396-nonrigidicp, 2020.
- [MWJ12] Meng Y., Wang C. C., Jin X.: Flexible shape control for automatic resizing of apparel products. Computer-Aided Design 44, 1 (1 2012), 68–76.
- [NH14] Neophytou A., Hilton A.: A layered model of human body and garment deformation. In 2014 2nd International Conference on 3D Vision (Tokyo, Japan, 2014), vol. 1, IEEE, pp. 171–178.
10.1109/3DV.2014.52 Google Scholar
- [PBDSH13] Panozzo D., Baran I., Diamanti O., Sorkine-Hornung O.: Weighted averages on surfaces. ACM Transactions on Graphics (TOG) 32, 4 (2013), 60.
- [PMPHB17] Pons-Moll G., Pujades S., Hu S., Black M. J.: Clothcap: Seamless 4d clothing capture and retargeting. ACM Transactions on Graphics (TOG) 36, 4 (2017), 73.
- [PZZD18] Pavlakos G., Zhu L., Zhou X., Daniilidis K.: Learning to estimate 3d human pose and shape from a single color image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Salt Lake City, Utah, USA, 2018), pp. 459–468.
10.1109/CVPR.2018.00055 Google Scholar
- [RLH*19] Ruan T., Liu T., Huang Z., Wei Y., Wei S., Zhao Y.: Devil in the Details: Towards accurate single and multiple human parsing. Proceedings of the AAAI Conference on Artificial Intelligence 33 (7 2019), 4814–4821.
10.1609/aaai.v33i01.33014814 Google Scholar
- [RRC*16] Rhodin H., Robertini N., Casas D., Richardt C., Seidel H.-P., Theobalt C.: General automatic human shape and motion capture using volumetric contour cues. In European Conference on Computer Vision (Amsterdam, The Netherlands, 2016), Springer, pp. 509–526.
10.1007/978-3-319-46454-1_31 Google Scholar
- [SC18a] Sawhney R., Crane K.: Boundary first flattening. ACM Transactions on Graphics (TOG) 37, 1 (2018), 5.
- [SC18b] Sharp N., Crane K.: Variational surface cutting. ACM Transactions on Graphics (TOG) 37, 4 (2018), 156.
- [SGDA*10] Stoll C., Gall J., De Aguiar E., Thrun S., Theobalt C.: Video-based reconstruction of animatable human characters. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1–10.
- [She96] Shewchuk J. R.: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In Workshop on Applied Computational Geometry (1996), Springer, pp. 203–222.
10.1007/BFb0014497 Google Scholar
- [SOC19] Santesteban I., Otaduy M. A., Casas D.: Learning-based animation of clothing for virtual try-on. In Computer Graphics Forum (2019), vol. 38, Wiley Online Library, pp. 355–366.
10.1111/cgf.13643 Google Scholar
- [TB13a] Tao X., Bruniaux P.: Toward advanced three-dimensional modeling of garment prototype from draping technique. International Journal of Clothing Science and Technology 25, 4 (7 2013), 266–283.
- [TB13b] Thomassey S., Bruniaux P.: A template of ease allowance for garments based on a 3D reverse methodology. International Journal of Industrial Ergonomics 43, 5 (2013), 406–416.
- [TBTPM20] Tiwari G., Bhatnagar B. L., Tung T., Pons-Moll G.: Sizer: A dataset and model for parsing 3d clothing and learning size sensitive 3d clothing. In European Conference on Computer Vision (ECCV) (August 2020), Springer.
- [VSGC20] Vidaurre R., Santesteban I., Garces E., Casas D.: Fully convolutional graph neural networks for parametric virtual try-on. In Computer Graphics Forum (2020), 39, 145–156.
- [WCPM18] Wang T. Y., Ceylan D., Popović J., Mitra N. J.: Learning a shared shape space for multimodal garment design. ACM Transactions on Graphics (TOG) 37, 6 (12 2018), 1–13.
- [WLL*09] Wang J., Lu G., Li W., Chen L., Sakaguti Y.: Interactive 3D garment design with constrained contour curves and style curves. Computer Aided Design 41, 9 (9 2009), 614–625.
- [WWY03] Wang C. C., Wang Y., Yuen M. M.: Feature based 3D garment design through 2D sketches. Computer Aided Design 35, 7 (6 2003), 659–672.
- [WWY05] Wang C. C., Wang Y., Yuen M. M.: Design automation for customized apparel products. Computer Aided Design 37, 7 (6 2005), 675–691.
- [XCZ*18] Xu W., Chatterjee A., Zollhöfer M., Rhodin H., Mehta D., Seidel H.-P., Theobalt C.: Monoperfcap: Human performance capture from monocular video. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1–15.
- [XYS*19] Xu Y., Yang S., Sun W., Tan L., Li K., Zhou H.: 3D virtual garment modeling from RGB images. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (Beijing, China, 2019), IEEE, pp. 37–45.
10.1109/ISMAR.2019.00-28 Google Scholar
- [YFHWW16] Yang J., Franco J.-S., Hétroy-Wheeler F., Wuhrer S.: Estimation of human body shape in motion with wide clothing. In European Conference on Computer Vision (Amsterdam, The Netherlands, 2016), Springer, pp. 439–454.
10.1007/978-3-319-46493-0_27 Google Scholar
- [YFHWW18] Yang J., Franco J.-S., Hétroy-Wheeler F., Wuhrer S.: Analyzing clothing layer deformation statistics of 3D human motions. In Proceedings of the European Conference on Computer Vision (ECCV) (Munich, Germany, 2018), pp. 237–253.
10.1007/978-3-030-01234-2_15 Google Scholar
- [YPA*18] Yang S., Pan Z., Amert T., Wang K., Yu L., Berg T., Lin M. C.: Physics-inspired garment recovery from a single-view image. ACM Transactions on Graphics (TOG) 37, 5 (11 2018), 1–14.
- [ZCJ*20] Zhu H., Cao Y., Jin H., Chen W., Du D., Wang Z., Cui S., Han X.: Deep fashion3d: A dataset and benchmark for 3D garment reconstruction from single images. In European Conference on Computer Vision (2020), Springer, pp. 512–530.
10.1007/978-3-030-58452-8_30 Google Scholar
- [ZPBPM17] Zhang C., Pujades S., Black M., Pons-Moll G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Hawaii, USA, 2017).
10.1109/CVPR.2017.582 Google Scholar