Co-transplantation of Wharton's jelly mesenchymal stem cell-derived osteoblasts with differentiated endothelial cells does not stimulate blood vessel and osteoid formation in nude mice models
Marie Naudot
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorAnaïs Barre
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorAlexandre Caula
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Search for more papers by this authorHenri Sevestre
Service d'anatomie et de cytology pathologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Search for more papers by this authorStéphanie Dakpé
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorAndreas Albert Mueller
Department of Cranio-Maxillofacial Surgery, University and University Hospital Basel, Basel, Switzerland
Department of Biomedical Engineering, Regenerative Medicine and Oral Health Technologies, University of Basel, Allschwil, Switzerland
Search for more papers by this authorBernard Devauchelle
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorSylvie Testelin
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorJean Pierre Marolleau
Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
EA 4666, HEMATIM, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorCorresponding Author
Sophie Le Ricousse
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Institut Faire Faces, Amiens, France
Correspondence
Sophie Le Ricousse, EA 7516, CHIMERE, Centre Universitaire de Recherche en Santé, CHU Amiens Picardie Sud, F-80054 Amiens cedex 1, France.
Email: [email protected]
Search for more papers by this authorMarie Naudot
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorAnaïs Barre
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorAlexandre Caula
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Search for more papers by this authorHenri Sevestre
Service d'anatomie et de cytology pathologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Search for more papers by this authorStéphanie Dakpé
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorAndreas Albert Mueller
Department of Cranio-Maxillofacial Surgery, University and University Hospital Basel, Basel, Switzerland
Department of Biomedical Engineering, Regenerative Medicine and Oral Health Technologies, University of Basel, Allschwil, Switzerland
Search for more papers by this authorBernard Devauchelle
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorSylvie Testelin
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
Institut Faire Faces, Amiens, France
Search for more papers by this authorJean Pierre Marolleau
Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
EA 4666, HEMATIM, University of Picardie Jules Verne, Amiens, France
Search for more papers by this authorCorresponding Author
Sophie Le Ricousse
EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
Institut Faire Faces, Amiens, France
Correspondence
Sophie Le Ricousse, EA 7516, CHIMERE, Centre Universitaire de Recherche en Santé, CHU Amiens Picardie Sud, F-80054 Amiens cedex 1, France.
Email: [email protected]
Search for more papers by this authorAbstract
A major challenge in bone tissue engineering is the lack of post-implantation vascular growth into biomaterials. In the skeletal system, blood vessel growth appears to be coupled to osteogenesis—suggesting the existence of molecular crosstalk between endothelial cells (ECs) and osteoblastic cells. The present study (performed in two murine ectopic models) was designed to determine whether co-transplantation of human Wharton's jelly mesenchymal stem cell-derived osteoblasts (WJMSC-OBs) and human differentiated ECs enhances bone regeneration and stimulates angiogenesis, relative to the seeding of WJMSC-OBs alone.
Human WJMSC-OBs and human ECs were loaded into a silicate-substituted calcium phosphate (SiCaP) scaffold and then ectopically implanted at subcutaneous or intramuscular sites in nude mice. At both subcutaneous and intramuscular implantation sites, we observed ectopic bone formation and osteoids composed of host cells when WJMSC-OBs were seeded into the scaffold. However, the addition of ECs was associated with a lower level of osteogenesis, and we did not observe stimulation of blood vessel ingrowth. in vitro studies demonstrated that WJMSC-OBs lost their ability to secrete vascular endothelial growth factor and stromal cell-derived factor 1—including when ECs were present. In these two murine ectopic models, our cell-matrix environment combination did not seem to be optimal for inducing vascularized bone reconstruction.
CONFLICT OF INTEREST
The authors declare that they have no competing or commercial interests.
REFERENCES
- Clarkin, C. E., Emery, R. J., Pitsillides, A. A., & Wheeler-Jones, C. P. D. (2008). Evaluation of VEGF-mediated signalling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol, 214, 537–544.
- Coathup, M. J., Cai, Q., Campion, C., Buckland, T., & Blunn, G. W. (2013). The effect of particle size on the osteointegration of injectable silicate-substituted calcium phosphate bone substitute materials. J Biomed Mater Res B Appl Biomater, 101, 902–910. https://doi.org/10.1002/jbm.b.32895
- Cornejo, A., Sahar, D. E., Stephenson, S. M., Chang, S., Nguyen, S., Guda, T., … Wang, H. T. (2012). Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tiss Eng Part A, 18, 1552–1561. https://doi.org/10.1089/ten.tea.2011.0515
- Correia, C. R., Santos, T. C., Pirraco, R. P., Cerqueira, M. T., Marques, A. P., Reis, R. L., & Mano, J. F. (2017). In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomater, 53, 483–494. https://doi.org/10.1016/j.actbio.2017.02.007
- Fuchs, S., Ghanaati, S., Orth, C., Barbeck, M., Kolbe, M., Hofmann, A., … Kirkpatrick, C. J. (2009). Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials, 30, 526–534. https://doi.org/10.1016/j.biomaterials.2008.09.058
- Fuchs, S., Hofmann, A., & Kirkpatrick, C. J. (2007). Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimentional and 3-dimentional co-cultures with osteoblastic lineage cells. Tiss Eng, 13, 2577–2588.
- Gershovich, J. G., Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2013). Enhanced osteogenesis in cocultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds. Tissue Eng Part A, 19, 2565–2576. https://doi.org/10.1089/ten.TEA.2013.0256
- Gnecchi, M., Danieli, P., Malpasso, G., & Ciuffreda, M. C. (2016). Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol, 1446, 123–146. https://doi.org/10.1007/978-1-4939-3584-0_26
10.1007/978-1-4939-3584-0_26 Google Scholar
- Grellier, M., Granja, P. L., Fricain, J.-C., Bidarra, S. J., renard, M., Bareille, R., … Barbosa, M. A. (2009). The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials, 30, 3271–3278. https://doi.org/10.1016/j.biomaterials.2009.02.033
- Han, Y., Chai, J., Sun, T., Li, D., & Tao, R. (2011). Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun, 413, 561–565. https://doi.org/10.1016/j.bbrc.2011.09.001
- He, X., Dziak, R., Yuan, X., Mayo, K., Genco, R., Swihart, M., … Yang, S. (2013). BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. PLoS ONE, 8(4), e60473. https://doi.org/10.1371/journal.pone.0060473
- Hing, K. A., Wilson, L. F., Buckland, T., & T. (2007). Comparative performance of three ceramic bone graft substitutes. Spine J, 7, 475–490.
- Hsieh, J. Y., et al. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cell and Dev, 19, 1895–1910. https://doi.org/10.1089/scd.2009.0485
- Huang, B., Wang, W., Li, Q., Wang, Z., Yan, B., Zhang, Z., … Bai, X. (2016). Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nature Com, 7, 13885. https://doi.org/10.1038/ncomms13885
- Johari, B., Ahmadzadehzarajabad, M., Azami, M., Kazemi, M., Soleimani, M., Kargozar, S., … Samadikuchaksaraei, A. (2016). Repair of critical defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. J Biomed Mater Res Part A, 104A, 1770–1778. https://doi.org/10.1002/jbm.a.35710
- Kim, J. Y., Jin, G. Z., Park, I. S., Kim, J. N., Chun, S. Y., Park, E. K., … Cho, D. W. (2010). Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis. Tissue Eng Part A, 16, 2229–2236. https://doi.org/10.1089/ten.TEA.2009.0644
- Kim, S.-S., Park, M. S., Cho, S.-W., Kang, W. S., Ahn, K.-M., Lee, J.-H., & Kim, B.-S. (2010). Enhanced bone formation by marrow-derived endothelial and osteogenic cell transplantation. J Biomed Mat Res, A, 92, 246–253. https://doi.org/10.1002/jbm.a.32360
- Kitaori, T., Ito, H., Schwarz, E. M., Tsutsumi, R., Yoshitomi, H., Oishi, S., … Nakamura, T. (2009). Stromal cell-derived Factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum, 60, 813–823. https://doi.org/10.1002/art.24330
- Kumar, S., Wan, C., Ramaswamy, G., Clemens, T. L., & Ponnazhagan, S. (2010). Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther, 18, 1026–1034. https://doi.org/10.1038/mt.2009.315
- Léotot, J., Lebouvier, A., Hernigou, P., Bierling, P., Rouard, H., & Chevallier, N. (2015). Bone-forming capacity and biodistribution of bone marrow-derived stromal cells directly loaded into scaffolds: A novel and easy approach for clinical application of bone regeneration. Cell Transplant, 24, 1945–1955. https://doi.org/10.3727/096368914X685276
- Leszczynska, J., Zyzynska-Granica, B., Koziak, K., Ruminski, S., & Lewandowska-Szumiel, M. (2013). Contribution of endothelial cells to human bone-derived cells expansion in coculture. Tiss Eng Part A, 19, 393–402. https://doi.org/10.1089/ten.tea.2011.0710
- Lin, Q., Wang, L., Bai, Y., Hu, M., Mo, J., He, H., … Wang, L. (2016). Effect of the co-culture of human bone marrow mesenchymal stromal cells with human umbilical vein endothelial cells in vitro. J Recept Signal Transduct, 36, 221–224. https://doi.org/10.3109/10799893.2015.1075043
- Mankani, M. H., Kuznetsov, S. A., Fowler, B., Kingman, A., & Robey, P. G. (2001). In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape. Biotechnol Bioeng, 72, 96–107. PMID: 11084599
- Mastrogiamo, M., Scaglione, S., Martinetti, R., Dolcini, L., Beltrame, F., Cancedda, R., & Quarto, R. R. (2006). Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials, 27, 3230–3237.
- Mauney, J. R., Volloch, V., & Kaplan, D. L. (2005). Role of adult mesenchymal stem cells in bone tissue engineering applications current status and future prospects. Tissue Eng, 11, 787–802.
- Mebarki, M., Coquelin, L., Layrolle, P., Battaglia, S., Tossou, M., Hernigou, P., … Chevallier, N. (2017). Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomat, 59, 94–107. https://doi.org/10.1016/j.actbio.2017.06.018
- Medina, R. J., et al. (2017). Endothelial progenitors: A consensus statement of nomenclature. Stem Cell Trans Med, 6, 1316–1320. https://doi.org/10.1002/sctm.16-0360
- Mueller, A. A., Forraz, N., Gueven, S., Atzeni, G., Degoul, O., Pagnon-Minot, A., … McGuckin, C. (2014). Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture. Plast Reconstr Surg, 134, 59e–69e. https://doi.org/10.1097/PRS.0000000000000305
- Orbay, H., Busse, B., Leach, J. K., & Sahar, D. E. (2017). The effects of adipose-derived stem cells differentiated into endothelial cells and osteoblasts on healing of critical size calvarial defects. J Craniofac Surg, 28, 1874–1879. https://doi.org/10.1097/SCS.0000000000003910
- Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., … Lapidot, T. (2000). Induction of the chemokine stromal-derived factor 1 following DNA damage improve human stem cell function. J Clin Invest, 106, 1331–1339. https://doi.org/10.1172/JCI10329
- Ramasamy, S. K., Kusumbe, A. P., Wang, L., & Adams, R. H. (2014). Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature, 507, 376–380. https://doi.org/10.1038/nature13146
- Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M. Z., Anver, M. R., … Oppenheim, J. J. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. In vivo neovascularization induced by stromal-derived factor 1α. Am J Pathol, 154, 1125–1135.
- Schultheiss, J., Seebach, C., Henrich, D., Wilhelm, K., Barker, J. H., & Frank, J. (2011). Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitute. Eur J Trauma Emerg Surg, 37, 635–644. https://doi.org/10.1007/s00068-011-0119-0
- Shah, A. R., Wenke, J. C., & Agrawal, C. M. (2016). Manipulation of human primary endothelial cell and osteoblast coculture ratios to augment vasculogenesis and mineralization. Ann Plast Surg, 77, 122–128. https://doi.org/10.1097/SAP.0000000000000318
- Steffens, L., Wenger, A., Stark, G. B., & Finkenzeller, G. (2009). In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med, 13, 3380–3386. https://doi.org/10.1111/j.1582-4934.2008.00418.x
- Todeschi, M. R., El Backly, R., Capelli, C., Daga, A., Patrone, E., Introna, M., … Mastrogiacomo, M. (2015). Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev, 24, 1570–1581. https://doi.org/10.1089/scd.2014.0490
- Tu, T. C., Nagano, M., Yamashita, T., Hamada, H., Ohneda, K., Kimura, K., & Ohneda, O. (2016). A chemokine receptor, CXCR4, which is regulated by hypoxia-inducuble factor 2x, is crucial for functional endothelial progenitor cell migration to ischemic tissue and wound repair. Stem Cell Dev, 25, 266–276. https://doi.org/10.1089/scd.2015.0290
- Unger, R. E., Ghanaati, S., Orth, C., Sartoris, A., barbeck, M., Halstenberg, S., … Kirkpatrick, C. J. (2010). The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials, 31, 6959–6967. https://doi.org/10.1016/j.biomaterials.2010.05.057
- Unger, R. E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., … Kirkpatrick, C. J. (2007). Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials, 28, 3965–3976. https://doi.org/10.1016/j.biomaterials.2007.05.032
- von Bahr, L., Batsis, I., Moll, G., Hägg, M., Szakos, A., Sundberg, B., … Le Blanc, K. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem cells, 30, 1575–1578. https://doi.org/10.1002/stem.1118
- Zhou, Y., Huong, R., Fan, W., Prasadam, I., Crawford, R., & Xiao, Y. (2018). Mesenchymal stromal cells regulate the cell mobility and the immune response during osteogenesis through secretion of vascular endothelial growth factor A. J Tissue Eng Regen Med, 12, e566–e578. https://doi.org/10.1002/term.2327