Genetic Analysis of Accumulation of Amylose and Resistant Starch in Subtropical Maize Hybrids
Shashidhar B. Reddappa
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRajkumar U. Zunjare
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorVignesh Muthusamy
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRashmi Chhabra
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorZahirul A. Talukder
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShalma Maman
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorVinay Bhatt
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRavindra Kumar Kasana
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorDigvender Pal
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRajesh Kumar
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorBrijesh K. Mehta
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
Search for more papers by this authorGodawari S. Pawar
Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, India
Search for more papers by this authorAshok K. Singh
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorCorresponding Author
Firoz Hossain
ICAR-Indian Agricultural Research Institute, New Delhi, India
E-mail: [email protected]
Search for more papers by this authorShashidhar B. Reddappa
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRajkumar U. Zunjare
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorVignesh Muthusamy
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRashmi Chhabra
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorZahirul A. Talukder
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorShalma Maman
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorVinay Bhatt
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRavindra Kumar Kasana
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorDigvender Pal
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorRajesh Kumar
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorBrijesh K. Mehta
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
Search for more papers by this authorGodawari S. Pawar
Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, India
Search for more papers by this authorAshok K. Singh
ICAR-Indian Agricultural Research Institute, New Delhi, India
Search for more papers by this authorCorresponding Author
Firoz Hossain
ICAR-Indian Agricultural Research Institute, New Delhi, India
E-mail: [email protected]
Search for more papers by this authorAbstract
Amylose and resistant starch (RS) possess numerous industrial applications and health benefits. However, maize grains possess low amylose (<35%) and RS (<5%). To date, no information is available on the genetic variability of amylose and RS in subtropical maize. Here, 21 hybrids developed using half-diallel mating design are evaluated for starch parameters at three locations. Analysis of variance (ANOVA) revealed a minor contribution for environments for amylose and RS. Amylose (22.2%–49.1%) and RS (1.02%–23.9%) showed wide variation among the hybrids. The experimental hybrids possessed significantly higher amylose (38.1%) and RS (20.9%) over the check hybrids (amylose: 29.1%, RS: 2.3%). PUSA-AML-H12, PUSA-AML-H18, and PUSA-AML-H16 are observed to be the most promising hybrids. Amylose and RS are positively correlated (r = 0.45), while total starch (TS) is negatively correlated with RS (r = −0.53). PMI-AML-147, PMI-AML-149, and PMI-AML-146 are the best general combiners for amylose and RS. Pusa-AML-H1, Pusa-AML-H12, and Pusa-AML-H5 emerged as the best specific combiners for amylose and RS. Both additive and nonadditive variances are important for amylose and RS. This is the first study of amylose and RS in a subtropical maize background, which could be significant in improving amylose and RS.
Conflict of Interest
The authors declare that no conflict of interest.
Open Research
Data Availability Statement
Data is available as electronic supplementary material.
Supporting Information
Filename | Description |
---|---|
star202300147-sup-0001-SuppMat.pdf350.5 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1O. Erenstein, M. Jaleta, K. Sonder, K. Mottaleb, B. M. Prasanna, Food Secur. 2022, 14, 1295.
- 2S. B. Reddappa, V. Muthusamy, R. U. Zunjare, R. Chhabra, Z. A. Talukder, S. Maman, G. Chand, D. Pal, R. Kumar, B. K. Mehta, A. K. Singh, F. Hossain, J. Food Compos. Anal. 2023, 119, 105236.
- 3S. Yang, Y. Chen, Y. Hu, C. Yuan, D. Lu, Int. J. Biol. Macromol. 2021, 173, 219.
- 4W. Zhang, M. Azizi-Lalabadi, S. Jafarzadeh, S. M. Jafari, Carbohydr. Polym. 2023, 320, 121266.
- 5N. Han, W. Li, C. Xie, F. Fu, Preprints. 2021, https://doi.org/10.20944/preprints202105.0560.v1.
10.20944/preprints202105.0560.v1 Google Scholar
- 6F. Hossain, R. Chhabra, E. L. Devi, R. U. Zunjare, S. K. Jaiswal, V. Muthusamy, 3 Biotech 2019, 9, 1.
- 7Z. A. Talukder, V. Muthusamy, R. Chhabra, N. Gain, S. B. Reddappa, S. J. Mishra, R. Kasana, V. Bhatt, G. Chand, A. Katral, R. U. Zunjare, F. Hossain, Sci. Rep. 2022, 12, 1.
- 8N. Haini, L. Jau-Shya, R. G. M. Rosli, H. Mamat, J. Cereal Sci. 2021, 98, 103176.
- 9S. B. Reddappa, R. Chhabra, Z. A. Talukder, V. Muthusamy, R. U. Zunjare, F. Hossain, 3 Biotech 2022, 12, 62.
- 10H. H. Kramer, R. L. Whistler, E. G. Anderson, Agron. J. 1956, 48, 170.
10.2134/agronj1956.00021962004800040007x Google Scholar
- 11H. H. Kramer, R. P. Bear, M. S. Zuber, Agron. J. 1958, 50, 229.
10.2134/agronj1958.00021962005000040017x Google Scholar
- 12H. N. Englyst, S. M. Kingman, J. H. Cummings, Eur. J. Clin. Nutr. 1992, 46, S33.
- 13L. Hu, Y. Zheng, Y. Peng, C. Yao, H. Zhang, Int. J. Biol. Macromol. 2016, 86, 105.
- 14D. L. Topping, P. M. Clifton, Physiol. Rev. 2001, 81, 1031.
- 15M. D. Robertson, Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 362.
- 16K. M. Behall, J. Hallfrisch, Eur. J. Clin. Nutr. 2002, 56, 913.
- 17Y. Ai, J. Jane, Compr. Rev. Food Sci. Food Saf. 2016, 15, 581.
- 18K. C. Maki, L. M. Sanders, M. S. Reeves, V. N. Kaden, T. M. Rains, Y. Cartwright, Int. J. Food Sci. Nutr. 2009, 60, 296.
- 19 Grand View Research, Resistant Starch Market Size, Share & Growth Report, Report ID: GVR-4-68040-038-7, https://www.grandviewresearch.com/industry-analysis/resistant-starch-market (accessed: september 2023).
- 20T. Chen, L. Ning, X. Liu, D. Cui, H. Zhang, D. Li, L. Zhao, H. Chen, Crop Sci. 2013, 53, 482.
- 21J. N. BeMiller, J. Agric. Food Chem. 2009, 57, 8125.
- 22M. L. Vineyard, R. P. Bear, M. M. MacMasters, W. L. Deatherage, Agron. J. 1958, 50, 595.
10.2134/agronj1958.00021962005000100009x Google Scholar
- 23C. Li, Y. Huang, R. Huang, Y. Wu, W. Wang, Plant Biotechnol. J. 2018, 16, 688.
- 24H. Tang, T. Mitsunaga, Y. Kawamura, Carbohydr. Polym. 2006, 63, 555.
- 25H. Jiang, M. Campbell, M. Blanco, J.-L. Jane, Carbohydr. Polym. 2010, 80, 1.
- 26L. Li, M. Blanco, J. Jane, Carbohydr. Polym. 2007, 67, 630.
- 27C. D. Boyer, R. R. Daniels, J. C. Shannon, Crop Sci. 1976, 16, 298.
- 28L. Li, H. Jiang, M. Campbell, M. Blanco, J. Jane, Carbohydr. Polym. 2008, 74, 396.
- 29M. Thitisaksakul, R. C. Jiménez, M. C. Arias, D. M. Beckles, J. Cereal Sci. 2012, 56, 67.
- 30K. D. Hedman, C. D. Boyer, Biochem. Genet. 1983, 21, 1217.
- 31J. Liu, S. Huang, M. Sun, S. Liu, Y. Liu, W. Wang, X. Zhang, H. Wang, W. Hua, Plant Methods 2012, 8, 1.
- 32J. Han, J. Wu, X. Liu, J. Shi, J. Xu, Food Prod. Process. Nutr. 2023, 5, 48.
- 33R. He, S. Li, G. Zhao, L. Zhai, P. Qin, L. Yang, Polymers 2023, 15, 2935.
- 34N. K. Garg, A. Dahuja, A. Singh, Indian J. Exp. Biol. 2020, 58, 738.
- 35G. Zhang, Z. Ao, B. R. Hamaker, J. Agric. Food Chem. 2008, 56, 4686.
- 36X. Zhang, X. Gao, Z. Li, L. Xu, Y. Li, R. Zhang, J. Xue, D. Guo, J. Integr. Agric. 2020, 19, 1554.
- 37N. K. Garg, A. Singh, M. K. Samota, D. P. Chaudhary, Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2597.
- 38M. Obadi, Y. Qi, B. Xu, Carbohydr. Polym. 2022 120185.
- 39G. Chand, R. U. Zunjare, T. Allen, V. Muthusamy, S. J. Mishra, R. K. Kasana, V. Bhatt, M. R. Ismail, K. Sarika, S. K. Guleria, F. Hossain, J. Cereal Sci. 2022, 107, 103534.
- 40H. Duo, F. Hossain, V. Muthusamy, R. U. Zunjare, R. Goswami, G. Chand, S. J. Mishra, R. Chhabra, M. M. Gowda, S. Pal, A. Baveja, J. S. Bhat, M. C. Kamboj, B. Kumar, J. J. Amalraj, R. Khulbe, B. Prakash, C. N. Neeraja, S. Rakshit, O. P. Yadav, PLoS ONE 2021, 16, e0245497.
- 41P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, J. E. Shaw, D. Bright, R. Williams, IDF Diabetes Atlas Committee, Diabetes Res. Clin. Pract. 2019, 157, 107843.
- 42B. Griffing, Aust. J. Biol. Sci. 1956, 9, 463.
- 43R. C. Team 2016 http://www.R-project.org/.
- 44W. Revelle 2017 https://CRAN.R-project.org/package=psych.