Morphological, Structural, and Functional Evaluation of Rice Starch Acylated in a System Catalyzed by the B-Lipase of Candida antarctica
Corresponding Author
Diego Montoya
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
E-mail: [email protected]
Search for more papers by this authorLuis Oveimar Barbosa
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorJonh Méndez
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorWalter Murillo
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorCorresponding Author
Diego Montoya
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
E-mail: [email protected]
Search for more papers by this authorLuis Oveimar Barbosa
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorJonh Méndez
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorWalter Murillo
GIPRONUT, Chemistry Department, Basic Sciences School, Universidad del Tolima, Barrio Santa Helena Parte Alta Cl 42 1-02 I, Ibagué-Tolima, 730006299 Colombia
Search for more papers by this authorAbstract
Starch modification by acylation induces significant changes in the mechanical and thermal properties of this polymer, widening the scope of its applicability to many different industries. In this work, the B-lipase of Candida antarctica is used as a catalyzer for the acylation of F60 variety rice starch, using linoleic and stearic acids as acyl donors in a homogeneous reaction system. Esterification is validated by infrared spectroscopy of the 1650–1750 cm−1 band, attributes to the carbonyl group (C═O). Amylose and crystallinity analysis reveales a reduction in the amylose content and a direct correlation with the crystalline configuration of the polymer. The modification increases the solubility, water absorption, and swelling, which is attributed to the crystallinity loss. Following the modification, the granules increase in size and lose their hexagonal shape. These variations in the physicochemical, morphological, and functional properties may directly affect the production chain, enabling entrance to growing markets worldwide.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. Mayilvahanan, A. Ramchary, A. Niraikulam, G. Marichetti Kuppuswami, K. Numbi Ramudu, Starch 2019, 71, 1700325.
- 2S. K. Mary, L. A. Pothan, S. Thomas, in Biopolymer Nanocomposites: Processing, Properties, and Applications, (Eds: A. Dufresne, S. Thomas, L. A. Pothan), John Wiley & Sons, Inc, Hoboken NJ, USA 2013.
- 3D. Trina Ghosh, N. Anil N., Carbohydr. Polym. 2012, 90, 1620.
- 4 Departamento Administrativo Nacional de Estadística (DANE), https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado. (Accessed, December 2019).
- 5A. Zarski, K. Bajer, S. Zarska, J. Kapusniak, Carbohydr. Polym. 2019, 214, 124.
- 6A. Alissandratos, P. J. Halling, Bioresour. Technol. 2012, 115, 41.
- 7W. Systemyan, X. Jiaying, S. Jia, W. Wenlong, X. Chungu, J. Mol. Catal. B: Enzym. 2014, 101, 73.
10.1016/j.molcatb.2014.01.003 Google Scholar
- 8S. Melis, W. R. Meza Morales, J. A. Delcour, Food Chem. 2019, 298, 125002.
- 9C. Akoh, S. Chang, G.-C. Lee, J.-F. Shaw, J. Agric. Food Chem. 2008, 56, 10445.
- 10A. Rajan, J. D. Sudha, T. E. Abraham, Ind. Crops Prod. 2008, 27, 50.
- 11O. Barbosa, C. Ortiz, R. Torres, R. Fernandez-Lafuente, J. Mol. Catal. B: Enzym. 2011, 71, 124.
- 12H. Horchani, M. Cha+óbouni, Y. Gargouri, A. Sayari, Carbohydr. Polym. 2010, 79, 466.
- 13V. Tacias-Pascacio, B. Torrestiana-Sánchez, L. Dal Magro, J. Virgen-Ortíz, F. Suárez-Ruíz, R. Rodrigues, R. Fernandez-Lafuente, Renewable Energy. 2019, 135, 1.
- 14V. Osuna, I. A. Rivero, J. Mex. Chem. Soc. 2012, 56, 176.
- 15A. Rincon-Aguirre, L. Bello Perez, S. Mendoza, A. del Real, M. Rodríguez García, Starch/Staerke 2018, 70, 1700066.
- 16M. Ji-Qiang, Z. Da-Nian, J. Zheng-Yu, X. Xue-Ming, C. Han-Qing, Food Chem. 2015, 187, 378.
- 17L. Wang, Y. J. Wang, J. Cereal Sci. 2004, 39, 291.
- 18Z. Yanjuan, G. Tao, H. Huayu, H. Zuqiang, H. Aimin, Z. Yuanqin, Y. Mei, I&EC 2014, 50, 2114.
- 19X. Deng, X. Han, X. Hu, S. Zheng, K. Liu, ChemistrySelect 2019, 4, 565.
- 20V. Quintero-Castaño, F. Castellanos-Galeano, C. Álvarez-Barreto, J. Lucas-Aguirre, L. Bello-Pérez, M. Rodríguez-Garcia, Food Chem. 2020, 315, 126241.
- 21H. Shi-Wei, W. Wei, Y. Wang, G. Jian-Hong, L. Ying, T. Ning-Ping, X. Chang-Hua, Spectrochim. Acta, Part A. 2019.
- 22S. Londoño-Restrepo, N. Rincón-Londoño, M. Contreras-Padilla, B. Millan-Malo, M. Rodriguez-Garcia, Int. J. Biol. Macromol. 2018, 113, 1188.
- 23B. Contreras-Jiménez, G. Vázquez-Contreras, M. Cornejo-Villegas, A. del Real-López, M. Rodríguez-García, Food Chem. 2019, 283, 83.
- 24D. Rodríguez-Torres, W. Murillo-Arango, H. A. Vaquiro-Herrera, J. Solanilla-Duque, AgronomÃa Colombiana. 2017, 35, 116.
10.15446/agron.colomb.v35n1.65711 Google Scholar
- 25L. Lin, C. Cai, R. Gilbert, E. Li, J. Wang, C. Wei, Food Hydrocolloids. 2016, 52, 359.
- 26A. Desrumaux, J. Bouvier, J. Burri, Cereal Chem. J. 1999, 76, 699.
- 27Z. Zhou, K. Robards, S. Helliwell, C. Blanchard, Food Res. Int. 2007, 40, 209.
- 28C. Biliaderis, Food Tech. 1992, 46, 98.
- 29C. L. Novelo, A. D. Betancur, Starch/Staerke 2005, 57, 431.
- 30S. Chang, L. Liu, J. Food Sci. 1991, 56, 564.
- 31J. Cai, J. Man, J. Huang, Q. Liu, W. Wei, C. Wei, Carbohydr. Polym. 2015, 125, 35.
- 32N. S. Sodhi, N. Singh, J. Food Eng. 2005, 70, 117.
- 33L. Wang, B. Xie, J. Shi, S. Xue, Q. Deng, Y. Wei, B. Tian, Food Hydrocolloids. 2010, 24, 208.
- 34K. Kaur, N. Singh, Food Chem. 2000, 71, 511.
- 35N. Singh, L. Kaur, K. Sandhu, J. Kaur, K. Nishinari, Food Hydrocolloids. 2006, 20, 532.
- 36L. Lacerda, D. Leite, N. da Silveira, J. Cereal Sci. 2019, 89, 102819.
- 37K. Adebowale, T. Afolabi, O. Lawal, Food Chem. 2002, 78, 305.
- 38O. S. Lawal, Carbohydr. Res. 2004, 339, 2673.
- 39Z. Gonzalez, E. Perez, Starch/Staerke 2002, 54, 148.
- 40H. Liu, H. Corke, Starch/Staerke 1999, 51, 249.
- 41A. Siroha, K. Sandhu, M. Kaur, V. Kaur, Int. J. Biol. Macromol. 2019, 131, 1077.
- 42J. Y. Li, A. I. Yeh, J. Food Eng. 2001, 50, 141.
- 43N. R. Breternitz, C. H. d. V. Fidelis, V. M. Silva, M. N. Eberlin, M. D. Hubinger, Food Bioprod. Process. 2017, 105, 12.
- 44P. Shao, H. Zhang, B. Niu, W. Jin, Int. J. Biol. Macromol. 2018, 118, 2032.