A Self-Powered Triboelectric Hybrid Coder for Human–Machine Interaction
Yu Cao
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYuan Yang
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXuecheng Qu
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Bojing Shi
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLingling Xu
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Search for more papers by this authorJiangtao Xue
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Institute of Engineering Medicine, Beijing Institute of technology, Beijing, 100081 China
Search for more papers by this authorChan Wang
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Search for more papers by this authorYuan Bai
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYansong Gai
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Dan Luo
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhou Li
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYu Cao
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYuan Yang
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorXuecheng Qu
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Bojing Shi
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLingling Xu
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Search for more papers by this authorJiangtao Xue
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Institute of Engineering Medicine, Beijing Institute of technology, Beijing, 100081 China
Search for more papers by this authorChan Wang
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Search for more papers by this authorYuan Bai
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorYansong Gai
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
Search for more papers by this authorCorresponding Author
Dan Luo
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhou Li
Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Human–machine interfaces have penetrated various academia and industry fields such as smartphones, robotic, virtual reality, and wearable electronics, due to their abundant functional sensors and information interaction methods. Nevertheless, most sensors’ complex structural design, monotonous parameter detection capability, and single information coding communication hinder their rapid development. As the frontier of self-powered sensors, the triboelectric nanogenerator (TENG) has multiple working modes and high structural adaptability, which is a potential solution for multi-parameter sensing and miniaturizing of traditional interactive electronic devices. Herein, a self-powered hybrid coder (SHC) based on TENG is reported to encode two action parameters of touch and press, which can be used as a smart interface for human–machine interaction. The top-down hollow structure of the SHC, not only constructs a compositing mode to generate stable touch and press signals but also builds a hybrid coding platform for generating action codes in synergy mode. When a finger touches or presses the SHC, Morse code and Gray code can be transmitted for text information or remote control of electric devices. This self-powered coder is of reference value for designing an alternative human–machine interface and having the potential to contribute to the next generation of highly integrated portable smart electronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202101529-sup-0001-SuppMat.pdf2 MB | Supporting Information |
smtd202101529-sup-0002-MovieS1.mp417.7 MB | Supplemental Movie 1 |
smtd202101529-sup-0003-MovieS2.mp417.9 MB | Supplemental Movie 2 |
smtd202101529-sup-0004-MovieS3.mp419 MB | Supplemental Movie 3 |
smtd202101529-sup-0005-MovieS4.mp435.2 MB | Supplemental Movie 4 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Li, L. D.a Xu, S. Zhao, J. Ind. Inf. Integr. 2018, 10, 1.
- 2S. Chen, H. Xu, D. Liu, B. Hu, H. Wang, IEEE Internet Things J. 2014, 1, 349.
- 3B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang, C. Lee, Nano Energy 2020, 79, 105414.
- 4Q. Shi, B. Dong, T. He, Z. Sun, C. Lee, InfoMat 2020, 2, 1131.
- 5D. Quesada-González, A. Merkoçi, Biosens. Bioelectron. 2017, 92, 549.
- 6B. Shih, D. Shah, J. Li, T. G. Thuruthel, Y.-L. Park, F. Iida, Z. Bao, R. Kramer-Bottiglio, M. T. Tolley, Sci. Robot. 2020, 5, aaz9239.
- 7J. Xiong, J. Chen, P. S. Lee, Adv. Mater. 2021, 33, 2002640.
- 8M. Ilami, H. Bagheri, R. Ahmed, E. O. Skowronek, H. Marvi, Adv. Mater. 2021, 33, 2003139.
- 9M. Venkatesan, H. Mohan, J. R. Ryan, C. M. Schürch, G. P. Nolan, D. H. Frakes, A. F. Coskun, Cell Rep. Med. 2021, 2, 100348.
- 10Y. Shi, F. Wang, J. Tian, S. Li, E. Fu, J. Nie, R. Lei, Y. Ding, X. Chen, Z. L. Wang, Sci. Adv. 2021, 7, abe2943.
- 11S. Mishra, Y.-S. Kim, J. Intarasirisawat, Y.-T. Kwon, Y. Lee, M. Mahmood, H.-R. Lim, R. Herbert, K. J. Yu, C. S. Ang, Sci. Adv. 2020, 6, eaay1729.
- 12M. J. Cima, Nat. Biotechnol. 2014, 32, 642.
- 13T. Q. Trung, N. E. Lee, Adv. Mater. 2016, 28, 4338.
- 14K. Sanderson, Nature 2021, 591, 685.
- 15P. Bach-y-Rita, S. W. Kercel, Trends Cogn. Sci. 2003, 7, 541.
- 16D. Valdes-Ramirez, M. A. Medina-Pérez, R. Monroy, O. Loyola-González, J. Rodríguez-Ruiz, A. Morales, F. Herrera, IEEE Access 2019, 7, 48484.
- 17J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, G. Zhang, Appl. Phys. Lett. 2012, 101, 063112.
- 18Q. He, Y. Wu, Z. Feng, C. Sun, W. Fan, Z. Zhou, K. Meng, E. Fan, J. Yang, Nano Energy 2019, 59, 689.
- 19Y. K. Pang, X. H. Li, M. X. Chen, C. B. Han, C. Zhang, Z. L. Wang, ACS Appl. Mater. Interfaces 2015, 7, 19076.
- 20M. Zhu, T. He, C. Lee, Appl. Phys. Rev. 2020, 7, 031305.
- 21F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.
- 22Z. Liu, Y. Ma, H. Ouyang, B. J. Shi, N. Li, D. J. Jiang, F. Xie, D. Qu, Y. Zou, Y. Huang, H. Li, C. C. Zhao, P. C. Tan, M. Yu, Y. B. Fan, H. Zhang, Z. L. Wang, Z. Li, Adv. Funct. Mater. 2019, 29, 1970017.
- 23Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue, W. Ji, Z. Liu, Y. Jin, Y. Zou, Z. An, W. Zhang, X. Wang, W. Jiang, Z. Xu, Z. L. Wang, Z. Li, H. Zhang, Nano Lett. 2016, 16, 6042.
- 24H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu, H. Li, L. Zhao, B. Shi, Y. Fan, Y. Fan, Z. L. Wang, Z. Li, Adv. Mater. 2017, 29, 1703456.
- 25Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang, Z. Liu, H. Li, M. Yu, C. Wang, X. Qu, L. Zhao, Y. Fan, Z. L. Wang, Z. Li, Nat. Commun. 2019, 10, 2695.
- 26B. U. Hwang, J. H. Lee, T. Q. Trung, E. Roh, D. I. Kim, S. W. Kim, N. E. Lee, ACS Nano 2015, 9, 8801.
- 27J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang, Z. L. Wang, Adv. Mater. 2015, 27, 1316.
- 28Z. M. Wang, J. An, J. H. Nie, J. J. Luo, J. J. Shao, T. Jiang, B. D. Chen, W. Tang, Z. L. Wang, Adv. Mater. 2020, 32, 2001466.
- 29J. W. Liao, Y. Zou, D. J. Jiang, Z. Z. Liu, X. C. Qu, Z. Li, R. P. Liu, Y. B. Fan, B. J. Shi, Z. Li, L. Zheng, Nano Energy 2020, 69, 104417.
- 30H. Li, C. C. Zhao, X. X. Wang, J. P. Meng, Y. Zou, S. Noreen, L. M. Zhao, Z. Liu, H. Ouyang, P. C. Tan, M. Yu, Y. B. Fan, Z. L. Wang, Z. Li, Adv. Sci. 2019, 6, 1801625.
- 31M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He, H. Liu, T. Chen, C. Lee, Sci. Adv. 2020, 6, eaaz8693.
- 32S. Wang, S. Liu, J. Zhou, F. Li, J. Li, X. Cao, Z. Li, J. Zhang, B. Li, Y. Wang, Nano Energy 2020, 78, 105291.
- 33C.-M. Chiu, S.-W. Chen, Y.-P. Pao, M.-Z. Huang, S.-W. Chan, Z.-H. Lin, Sci. Technol. Adv. Mater. 2019, 20, 964.
- 34Q. Shi, C. Qiu, T. He, F. Wu, M. Zhu, J. A. Dziuban, R. Walczak, M. R. Yuce, C. Lee, Nano Energy 2019, 60, 545.
- 35Q. Shi, Z. Zhang, T. Chen, C. Lee, Nano Energy 2019, 62, 355.
- 36H. Guo, H. Wang, Z. Xiang, H. Wu, J. Wan, C. Xu, H. Chen, M. Han, H. Zhang, Adv. Funct. Mater. 2021, 31, 2103075.
- 37Q. Shi, C. Lee, Adv. Sci. 2019, 6, 1900617.
- 38J. Chen, X. Wen, X. Liu, J. Cao, Z. Ding, Z. Du, Nano Energy 2021, 80, 105446.
- 39R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, ACS Nano 2018, 12, 5190.
- 40D. H. Ho, J. Han, J. Huang, Y. Y. Choi, S. Cheon, J. Sun, Y. Lei, G. S. Park, Z. L. Wang, Q. Sun, Nano Energy 2020, 77, 105262.
- 41Q. J. Sun, X. H. Zhao, C. C. Yeung, Q. Tian, K. W. Kong, W. Wu, S. Venkatesh, W. J. Li, V. A. L. Roy, ACS Appl. Mater. Interfaces 2020, 12, 37239.
- 42F. Yu, J. C. Cai, L. Zhu, M. Sheikhi, Y. H. Zeng, W. Guo, Z. Y. Ren, H. Xiao, J. C. Ye, C. H. Lin, A. B. Wong, T. Wu, ACS Appl. Mater. Interfaces 2020, 12, 26258.
- 43H. Zhou, D. X. Li, X. M. He, X. D. Hui, H. Y. Guo, C. G. Hu, X. J. Mu, Z. L. Wang, Adv. Sci. 2021, 8, 2101020.
- 44A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S. J. Kim, Nano Energy 2019, 60, 850.
- 45J. Chen, X. J. Pu, H. Y. Guo, Q. Tang, L. Feng, X. Wang, C. G. Hu, Nano Energy 2018, 43, 253.
- 46H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, Nat. Commun. 2019, 10, 1427.
- 47S. Wang, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 6339.
- 48G. Zhu, W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, Z. L. Wang, Nano Lett. 2014, 14, 3208.