Cell-Selective Encapsulation within Metal–Organic Framework Shells via Precursor-Functionalized Aptamer Identification for Whole-Cell Cancer Vaccine
Huihui Yang
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYanfei Zhang
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorLeli Zeng
Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107 China
Search for more papers by this authorWen Yin
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Yuzhi Xu
Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJun Chen
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
Search for more papers by this authorCorresponding Author
Si-Yang Liu
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaoyong Zou
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorZhiyu He
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Zong Dai
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHuihui Yang
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYanfei Zhang
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorLeli Zeng
Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107 China
Search for more papers by this authorWen Yin
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Yuzhi Xu
Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJun Chen
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
Search for more papers by this authorCorresponding Author
Si-Yang Liu
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaoyong Zou
School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorZhiyu He
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorCorresponding Author
Zong Dai
Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Single-cell encapsulation is an emerging technology to endow cells with various functions, of which developing new applications in vivo is in high demand. Currently, metal–organic frameworks (MOFs) that are used as nanometric shells to coat living cells, however, have not realized cell-selective encapsulation. Here, a biocompatible and selective cell encapsulation strategy based on precursor-functionalized nucleolin aptamer and in situ MOF mineralization on the aptamer-identified cancer cell surface are developed. After MOF coating, the encapsulated cancer cells undergo immunogenic cell death, which is found associated with the changed cell stiffness (indicated by Young's modulus). The immunogenic dead cancer cells are used as whole-cell cancer vaccines (WCCVs), forming the integral WCCV-in-shell structure with enhanced immunogenicity ascribing from the surface-exposed calreticulin to promote dendritic cell recruitment, antigen presentation, and T-cell activation. The major activation pathways in the immune response are identified including tumor necrosis factor signaling pathway, cytokine–cytokine receptor interaction, and Toll-like receptor signaling pathway, suggesting the potential adjuvant effect of the MOF shells. After vaccination, WCCV-in-shell shows much better tumor immunoprophylaxis than either the imperfectly coated cancer cells or the traditional WCCV. This strategy is promising for the universal and facile development of novel whole-cell vaccines.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202101391-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. Gao, T. Chen, C. Feng, X. He, C. Mu, J.-i. Anzai, G. Li, Nat. Commun. 2019, 10, 2946; b) B. Oh, V. Swaminathan, A. Malkovskiy, S. Santhanam, K. McConnell, P. M. George, Adv. Sci. 2020, 7, 1902573.
- 2W. Youn, J. Y. Kim, J. Park, N. Kim, H. Choi, H. Cho, I. S. Choi, Adv. Mater. 2020, 32, 1907001.
- 3B. J. Kim, H. Cho, J. H. Park, J. F. Mano, I. S. Choi, Adv. Mater. 2018, 30, 1706063.
- 4S. A. Bencherif, R. W. Sands, O. A. Ali, W. A. Li, S. A. Lewin, T. M. Braschler, T.-Y. Shih, C. S. Verbeke, D. Bhatta, G. Dranoff, D. J. Mooney, Nat. Commun. 2015, 6, 7556.
- 5S.-Y. Liu, W. Wei, H. Yue, D.-Z. Ni, Z.-G. Yue, S. Wang, Q. Fu, Y.-Q. Wang, G.-H. Ma, Z.-G. Su, Biomaterials 2013, 34, 8291.
- 6J. Lu, X. Liu, Y.-P. Liao, F. Salazar, B. Sun, W. Jiang, C. H. Chang, J. Jiang, X. Wang, A. M. Wu, H. Meng, A. E. Nel, Nat. Commun. 2017, 8, 1811.
- 7S. Toraya-Brown, M. R. Sheen, P. Zhang, L. Chen, J. R. Baird, E. Demidenko, M. J. Turk, P. J. Hoopes, J. R. Conejo-Garcia, S. Fiering, Nanomedicine 2014, 10, 1273.
- 8F. Ghiringhelli, L. Apetoh, A. Tesniere, L. Aymeric, Y. Ma, C. Ortiz, K. Vermaelen, T. Panaretakis, G. Mignot, E. Ullrich, J.-L. Perfettini, F. Schlemmer, E. Tasdemir, M. Uhl, P. Génin, A. Civas, B. Ryffel, J. Kanellopoulos, J. Tschopp, F. André, R. Lidereau, N. M. McLaughlin, N. M. Haynes, M. J. Smyth, G. Kroemer, L. Zitvogel, Nat. Med. 2009, 15, 1170.
- 9A. Lin, Y. Gorbanev, J. De Backer, J. Van Loenhout, W. Van Boxem, F. Lemière, P. Cos, S. Dewilde, E. Smits, A. Bogaerts, Adv. Sci. 2019, 6, 1802062.
- 10Y. Fan, R. Kuai, Y. Xu, L. J. Ochyl, D. J. Irvine, J. J. Moon, Nano Lett. 2017, 17, 7387.
- 11a) L. Lybaert, K. A. Ryu, R. De Rycke, A. C. Chon, O. De Wever, K. Y. Vermaelen, A. Esser-Kahn, B. G. De Geest, Adv. Sci. 2017, 4, 1700050;
10.1002/advs.201700050 Google Scholarb) F. Wang, J. Gao, S. Wang, J. Jiang, Y. Ye, J. Ou, S. Liu, F. Peng, Y. Tu, Biomater. Sci. 2021, 9, 3945.
- 12C. A. Perez, A. Fu, H. Onishko, D. E. Hallahan, L. Geng, Int. J. Radiat. Biol. 2009, 85, 1126.
- 13a) L. Feng, K.-Y. Wang, G. S. Day, H.-C. Zhou, Chem. Soc. Rev. 2019, 48, 4823; b) N. Hanikel, M. S. Prévot, O. M. Yaghi, Nat. Nanotechnol. 2020, 15, 348.
- 14S. Li, M. Dharmarwardana, R. P. Welch, Y. Ren, C. M. Thompson, R. A. Smaldone, J. J. Gassensmith, Angew. Chem., Int. Ed. 2016, 55, 10691.
- 15a) K. Liang, J. J. Richardson, C. J. Doonan, X. Mulet, Y. Ju, J. Cui, F. Caruso, P. Falcaro, Angew. Chem., Int. Ed. 2017, 56, 8510; b) Z. Ji, H. Zhang, H. Liu, O. M. Yaghi, P. Yang, Proc. Natl. Acad. Sci. USA 2018, 115, 10582.
- 16W. Zhu, J. Guo, S. Amini, Y. Ju, J. O. Agola, A. Zimpel, J. Shang, A. Noureddine, F. Caruso, S. Wuttke, J. G. Croissant, C. J. Brinker, Adv. Mater. 2019, 31, 1900545.
- 17Z. Yu, S.-Y. Liu, Y. Zhang, Y. Li, Y. Xu, D. Chen, Z. Dai, X. Zou, Anal. Chem. 2021, 93, 7787.
- 18J. Lee, H. Cho, J. Choi, D. Kim, D. Hong, J. H. Park, S. H. Yang, I. S. Choi, Nanoscale 2015, 7, 18918.
- 19a) S. Kumar, I. J. Michael, J. Park, S. Granick, Y.-K. Cho, Small 2018, 14, 1802052; b) R. Riccò, W. Liang, S. Li, J. J. Gassensmith, F. Caruso, C. Doonan, P. Falcaro, ACS Nano 2018, 12, 13.
- 20K. Liang, J. J. Richardson, J. Cui, F. Caruso, C. J. Doonan, P. Falcaro, Adv. Mater. 2016, 28, 7910.
- 21a) X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Angew. Chem., Int. Ed. 2006, 45, 1557; b) K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186.
- 22P. J. Bates, D. A. Laber, D. M. Miller, S. D. Thomas, J. O. Trent, Exp. Mol. Pathol. 2009, 86, 151.
- 23S. E. Cross, Y.-S. Jin, J. Rao, J. K. Gimzewski, Nat. Nanotechnol. 2007, 2, 780.
- 24E. Kakavandi, R. Shahbahrami, H. Goudarzi, G. Eslami, E. Faghihloo, J. Cell. Biochem. 2018, 119, 2484.
- 25a) K. Lu, C. He, N. Guo, C. Chan, K. Ni, R. R. Weichselbaum, W. Lin, J. Am. Chem. Soc. 2016, 138, 12502; b) W. Song, J. Kuang, C.-X. Li, M. Zhang, D. Zheng, X. Zeng, C. Liu, X.-Z. Zhang, ACS Nano 2018, 12, 1978.
- 26a) Q.-S. Pan, T.-T. Chen, C.-P. Nie, J.-T. Yi, C. Liu, Y.-L. Hu, X. Chu, ACS Appl. Mater. Interfaces 2018, 10, 33070; b) X. Fu, G. Zhang, Y. Zhang, H. Sun, S. Yang, S. Ni, J. Cui, Chin. Chem. Lett. 2021, 32, 1559.
- 27a) X. Zhao, K. Yang, R. Zhao, T. Ji, X. Wang, X. Yang, Y. Zhang, K. Cheng, S. Liu, J. Hao, H. Ren, K. W. Leong, G. Nie, Biomaterials 2016, 102, 187; b) L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, G. Kroemer, Nat. Rev. Immunol. 2017, 17, 97; c) Y. Yang, J. Tang, P. L. Abbaraju, M. Jambhrunkar, H. Song, M. Zhang, C. Lei, J. Fu, Z. Gu, Y. Liu, C. Yu, Angew. Chem., Int. Ed. 2018, 57, 11764.
- 28T. Ci, H. Li, G. Chen, Z. Wang, J. Wang, P. Abdou, Y. Tu, G. Dotti, Z. Gu, Sci. Adv. 2020, 6, 3013.
- 29P. A. Darrah, J. J. Zeppa, P. Maiello, J. A. Hackney, M. H. Wadsworth, T. K. Hughes, S. Pokkali, P. A. Swanson, N. L. Grant, M. A. Rodgers, M. Kamath, C. M. Causgrove, D. J. Laddy, A. Bonavia, D. Casimiro, P. L. Lin, E. Klein, A. G. White, C. A. Scanga, A. K. Shalek, M. Roederer, J. L. Flynn, R. A. Seder, Nature 2020, 577, 95.
- 30Y. Li, L. He, H. Dong, Y. Liu, K. Wang, A. Li, T. Ren, D. Shi, Y. Li, Adv. Sci. 2018, 5, 1700805.
- 31J. Xu, H. Wang, L. Xu, Y. Chao, C. Wang, X. Han, Z. Dong, H. Chang, R. Peng, Y. Cheng, Z. Liu, Biomaterials 2019, 207, 1.
- 32a) W. H. Fridman, F. Pagès, C. Sautès-Fridman, J. Galon, Nat. Rev. Cancer 2012, 12, 298; b) Q. Zhou, Y. Zhang, J. Du, Y. Li, Y. Zhou, Q. Fu, J. Zhang, X. Wang, L. Zhan, ACS Nano 2016, 10, 2678.
- 33D. Qiao, Y. Chen, L. Liu, Biomaterials 2021, 269, 120674.
- 34C. W. Law, Y. Chen, W. Shi, G. K. Smyth, Genome Biol. 2014, 15, R29.
- 35L. J. Ochyl, J. J. Moon, J. Visualized Exp. 2015, 98, e52771.