Less-Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni3S2/CNT Nano-Heterostructured Electrocatalysts
Bin Zhao
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorJianwen Liu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorRenfei Feng
Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4 Canada
Search for more papers by this authorLei Wang
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorJiujun Zhang
Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorJing-Li Luo
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorCorresponding Author
Xian-Zhu Fu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]
Search for more papers by this authorBin Zhao
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorJianwen Liu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorRenfei Feng
Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4 Canada
Search for more papers by this authorLei Wang
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorJiujun Zhang
Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorJing-Li Luo
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorCorresponding Author
Xian-Zhu Fu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Energy crises, environmental pollution, and freshwater deficiency are critical issues on the planet. Electrolytic hydrogen generation from saline water, particularly from salt-contained hazardous wastewater, is significant to both environment and energy concerns but still challenging due to the high energy cost, severe corrosion, and the absence of competent electrocatalysts. Herein, a novel strategy is proposed for energy-efficient hydrogen production coupled with electro-oxidation removal of ethanolamine pollutant in saline water. To achieve this, an active and durable heterostructured electrocatalyst is developed by in situ growing Ni@Ni3S2 core@shell nanoparticles in cross-linked 3D carbon nanotubes’ (CNTs) network, achieving high dispersibility and metallic property, low packing density, and enriched exposed active sites to facilitate fast electron/mass diffusion. The unique Ni@Ni3S2/CNTs nano-heterostructures are competent for long-term stably electro-oxidizing environmental-unfriendly ethanolamine at a high current density of 100 mA cm−2 in saline water, which not only suppresses oxygen and chloride evolution reactions but also decreases the energy consumption to boost hydrogen production. Associated with experimental results, density functional theory studies indicate that the collaborative adsorption of electrolyte ions and ethanolamine molecules can synergistically modulate the adsorption/desorption properties of catalytic active centers on Ni@Ni3S2/CNTs surface, leading to long-term stabilized electrocatalysis for efficient ethanolamine oxidation removal and less-energy hydrogen simultaneous production in saline water.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202101195-sup-0001-SuppMat.pdf3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. S. Chen, Z. Ren, Adv. Funct. Mater. 2020, 30, 2006484.
- 2X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao, J. Qiu, Adv. Energy Mater. 2019, 9, 1901333.
- 3F. Yang, Y. Luo, Q. Yu, Z. Zhang, S. Zhang, Z. Liu, W. Ren, H.-M. Cheng, J. Li, B. Liu, Adv. Funct. Mater. 2021, 31, 2010367.
- 4L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2020, 13, 3439.
- 5W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater. 2021, 11, 2003192.
- 6W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2020, 33, 2003846.
- 7L. Bigiani, D. Barreca, A. Gasparotto, T. Andreu, J. Verbeeck, C. Sada, E. Modin, O. I. Lebedev, J. R. Morante, C. Maccato, Appl. Catal., B 2021, 284, 119684.
- 8J. Yu, B.-Q. Li, C.-X. Zhao, Q. Zhang, Energy Environ. Sci. 2020, 13, 3253.
- 9S. Dresp, T. N. Thanh, M. Klingenhof, S. Brückner, P. Hauke, P. Strasser, Energy Environ. Sci. 2020, 13, 1725.
- 10L.-N. Zhang, Z.-L. Lang, Y.-H. Wang, H.-Q. Tan, H.-Y. Zang, Z.-H. Kang, Y.-G. Li, Energy Environ. Sci. 2019, 12, 2569.
- 11M. R. M. Abu-Zahra, J. P. M. Niederer, P. H. M. Feron, G. F. Versteeg, Int. J. Greenhouse Gas Control 2007, 1, 135.
- 12P. Campo, M. T. Suidan, Y. Chai, J. Davis, Talanta 2010, 80, 1110.
- 13B.-M. An, Y. Heo, H.-A. Maitlo, J.-Y. Park, Bioresour. Technol. 2016, 210, 68.
- 14S. D. Lee, S. R. Mallampati, B. H. Lee, Environ. Sci. Pollut. Res. 2017, 24, 17769.
- 15K.-H. Chung, I.-S. Park, H.-J. Bang, Y.-K. Park, S.-J. Kim, B.-J. Kim, S.-C. Jung, Sci. Total Environ. 2019, 676, 190.
- 16B. Zhao, J. Liu, X. Wang, C. Xu, P. Sui, R. Feng, L. Wang, J. Zhang, J.-L. Luo, X.-Z. Fu, Nano Energy 2021, 80, 105530.
- 17Y. Li, X. Wei, L. Chen, J. Shi, Angew. Chem., Int. Ed. 2020, 60, 19550.
- 18B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui, L. Wang, J. Zhang, J.-L. Luo, X.-Z. Fu, Adv. Funct. Mater. 2021, 31, 2008812.
- 19Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu, Y. Liu, Y. Li, N. He, J. Shi, S. Wang, Angew. Chem., Int. Ed. 2020, 59, 19215.
- 20Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 2020, 13, 4564.
- 21Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, S.-Z. Qiao, Adv. Energy Mater. 2018, 8, 1801926.
- 22H. Xu, Y. Liao, Z. Gao, Y. Qing, Y. Wu, L. Xia, J. Mater. Chem. A 2021, 9, 3418.
- 23T. L. L. Doan, D. C. Nguyen, S. Prabhakaran, D. H. Kim, D. T. Tran, N. H. Kim, J. H. Lee, Adv. Funct. Mater. 2021, 31, 2100233.
- 24Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 2020, 32, 2000231.
- 25A. M. Harzandi, S. Shadman, A. S. Nissimagoudar, D. Y. Kim, H. D. Lim, J. H. Lee, M. G. Kim, H. Y. Jeong, Y. Kim, K. S. Kim, Adv. Energy Mater. 2021, 31, 2003448.
- 26Y. Lin, Y. Pan, S. Liu, K. Sun, Y. Cheng, M. Liu, Z. Wang, X. Li, J. Zhang, Appl. Catal., B 2019, 259, 118039.
- 27L. Yu, D. Deng, X. Bao, Angew. Chem., Int. Ed. 2020, 59, 15294.
- 28D. C. Nguyen, D. T. Tran, T. L. L. Doan, D. H. Kim, N. H. Kim, J. H. Lee, Adv. Energy Mater. 2020, 10, 1903289.
- 29M.-R. Gao, J. Jiang, S.-H. Yu, Small 2012, 8, 13.
- 30J.-J. Wang, P. Liu, C. C. Seaton, K. M. Ryan, J. Am. Chem. Soc. 2014, 136, 7954.
- 31J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini, Q. Wu, Z. Zheng, Z. Tang, C. Cheng, Adv. Funct. Mater. 2019, 29, 1805893.
- 32T. Li, S. Li, Q. Liu, J. Yin, D. Sun, M. Zhang, L. Xu, Y. Tang, Y. Zhang, Adv. Sci. 2020, 7, 1902371.
- 33S. Xu, T. Wang, Y. Ma, W. Jiang, S. Wang, M. Hong, N. Hu, Y. Su, Y. Zhang, Z. Yang, ChemSusChem 2017, 10, 4056.
- 34B. Y. Guan, L. Yu, X. W. D. Lou, Adv. Sci. 2017, 4, 1700247.
- 35L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. D. Lou, Angew. Chem., Int. Ed. 2018, 57, 172.
- 36L. K. Sarpong, M. Bredol, M. Schönhoff, Carbon 2017, 125, 480.
- 37Y. D. Lee, J.-W. Yu, W.-S. Cho, Y. C. Kim, I. T. Han, Y.-H. Lee, B.-K. Ju, Carbon 2010, 48, 1131.
- 38B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev. 2004, 104, 3893.
- 39J. W. Mullin, Crystallization, 4th ed., Butterworth Heinemann, Boston 2001.
- 40G. D. Park, Y. C. Kang, Small Methods 2021, 5, 2100302.
- 41H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H. Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140.
- 42D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing, X. Yang, Nat. Commun. 2019, 10, 3899.
- 43J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zha, J. Li, W. Yan, M. Wang, Nat. Commun. 2018, 9, 2885.
- 44L. Zeng, Z. Liu, K. Sun, Y. Chen, J. Zhao, Y. Chen, Y. Pan, Y. Lu, Y. Liu, C. Liu, J. Mater. Chem. A 2019, 7, 25628.
- 45Y. Huang, X. Chong, C. Liu, Y. Liang, B. Zhang, Angew. Chem., Int. Ed. 2018, 57, 13163.
- 46J. Dong, F.-Q. Zhang, Y. Yang, Y.-B. Zhang, H. He, X. Huang, X. Fan, X.-M. Zhang, Appl. Catal., B 2019, 243, 693.
- 47J. Hou, Y. Sun, Y. Wu, S. Cao, L. Sun, Adv. Funct. Mater. 2018, 28, 1704447.
- 48X. Nie, X. Kong, D. Selvakumaran, L. Lou, J. Shi, T. Zhu, S. Liang, G. Cao, A. Pan, ACS Appl. Mater. Interfaces 2018, 10, 36018.
- 49Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Energy Environ. Sci. 2017, 10, 788.
- 50S. Khatun, H. Hirani, P. Roy, J. Mater. Chem. A 2021, 9, 74.
- 51Y. Zhao, J. He, X. Han, X. Tian, M. Deng, W. Chen, B. Jiang, Carbohydr. Polym. 2012, 90, 988.
- 52S. Dresp, F. Dionigi, S. Loos, J. F. de Araujo, C. Spöri, M. Gliech, H. Dau, P. Strasser, Adv. Energy Mater. 2018, 8, 1800338.
- 53K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.-L. Luo, X.-Z. Fu, Adv. Funct. Mater. 2020, 30, 1909610.
- 54R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.
- 55D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V. R. Stamenkovic, N. M. Marković, Nat. Chem. 2009, 1, 466.
- 56R. G. Érenburg, L. I. Krishtalik, I. P. Yaroshevskaya, Elektrokhimiya 1975, 11, 993.
- 57S. Hao, L. Chen, C. Yu, B. Yang, Z. Li, Y. Hou, L. Lei, X. Zhang, ACS Energy Lett. 2019, 4, 952.
- 58P. Sabatier, La catalyse en chimie organique, Librairie Polytechnique, Paris et Liège 1920.
- 59V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem., Int. Ed. 2006, 45, 2897.