Volume 6, Issue 3 2101195
Research Article

Less-Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni3S2/CNT Nano-Heterostructured Electrocatalysts

Bin Zhao

Bin Zhao

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

Search for more papers by this author
Jianwen Liu

Jianwen Liu

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

Search for more papers by this author
Renfei Feng

Renfei Feng

Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4 Canada

Search for more papers by this author
Lei Wang

Lei Wang

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

Search for more papers by this author
Jiujun Zhang

Jiujun Zhang

Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444 China

Search for more papers by this author
Jing-Li Luo

Jing-Li Luo

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

Search for more papers by this author
Xian-Zhu Fu

Corresponding Author

Xian-Zhu Fu

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China

E-mail: [email protected]

Search for more papers by this author
First published: 19 December 2021
Citations: 7

Abstract

Energy crises, environmental pollution, and freshwater deficiency are critical issues on the planet. Electrolytic hydrogen generation from saline water, particularly from salt-contained hazardous wastewater, is significant to both environment and energy concerns but still challenging due to the high energy cost, severe corrosion, and the absence of competent electrocatalysts. Herein, a novel strategy is proposed for energy-efficient hydrogen production coupled with electro-oxidation removal of ethanolamine pollutant in saline water. To achieve this, an active and durable heterostructured electrocatalyst is developed by in situ growing Ni@Ni3S2 core@shell nanoparticles in cross-linked 3D carbon nanotubes’ (CNTs) network, achieving high dispersibility and metallic property, low packing density, and enriched exposed active sites to facilitate fast electron/mass diffusion. The unique Ni@Ni3S2/CNTs nano-heterostructures are competent for long-term stably electro-oxidizing environmental-unfriendly ethanolamine at a high current density of 100 mA cm−2 in saline water, which not only suppresses oxygen and chloride evolution reactions but also decreases the energy consumption to boost hydrogen production. Associated with experimental results, density functional theory studies indicate that the collaborative adsorption of electrolyte ions and ethanolamine molecules can synergistically modulate the adsorption/desorption properties of catalytic active centers on Ni@Ni3S2/CNTs surface, leading to long-term stabilized electrocatalysis for efficient ethanolamine oxidation removal and less-energy hydrogen simultaneous production in saline water.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.