2D Semiconductors Directly Grown on Si with Room Temperature Mobility Exceeding 2000 cm2 V−1 s−1
Mengzhuan Lin
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorLuocheng Liao
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorDirui Wu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYouna Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJianxing Wu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorLinkun Wang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorWanting Xu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYuan Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJiahao Song
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYingli Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Changjian Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]
Search for more papers by this authorMengzhuan Lin
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorLuocheng Liao
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorDirui Wu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYouna Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJianxing Wu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorLinkun Wang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorWanting Xu
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYuan Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJiahao Song
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYingli Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Changjian Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Bi2O2Se has recently attracted immense interest in nanoelectronics and optoelectronics for its superior mobility, ferroelectric order, tunable bandgap, and exceptional air stability. However, until now, the direct growth of Bi2O2Se is limited to mica, or perovskite oxide substrates [SrTiO3, LaAlO3, (La, Sr)(Al, Ta)O3], incompatible with mainstream semiconductor processes, and the room temperature mobility is limited to ≈800 cm2 V−1 s−1. Here, the controllable growth of Bi2O2Se nanoflakes on SiO2/Si substrates is reported and with room temperature electron mobility higher than 2000 cm2 V−1 s−1, exceeding all previous reports. The unpreceded in-plane electron mobility is found to strongly correlate with the out-of-plane ferroelectric order, which is stabilized by the expanded c-lattice in oxygen-deficient Bi2O2Se. The stabilized ferroelectric phase is confirmed by piezoresponse force microscopy (PFM) and anisotropic transport property measurements, which generally possess a high dielectric constant, thus reducing the impurity scattering. The silicon-compatible ultrahigh mobility Bi2O2Se sheds light to high-performance electronic devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202500026-sup-0001-SuppMat.docx8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. W. Tan, M. S. Yu, J. C. Tang, X. Y. Gao, Y. L. Yin, Y. C. Zhang, J. Y. Wang, X. Y. Gao, C. C. Zhang, X. H. Zhou, L. M. Zheng, H. T. Liu, K. L. Jiang, F. Ding, H. L. Peng, Nature 2023, 616, 66.
- 2Y. X. Zhang, H. D. Tian, H. X. Li, C. Yoon, R. A. Nelson, Z. L. Li, K. Watanabe, T. Taniguchi, D. Smirnov, R. K. Kawakami, J. E. Goldberger, F. Zhang, C. N. Lau, Nat. Commun. 2024, 15, 761.
- 3Z. S. Zhang, Y. Li, F. N. Mo, J. Q. Wang, W. Ling, M. Yu, Y. Huang, Adv. Mater. 2024, 36, 2311914.
- 4D. B. Zeng, Z. Y. Zhang, Z. Y. Xue, M. Zhang, P. K. Chu, Y. F. Mei, Z. Tian, Z. F. Di, Nature 2024, 632, 788.
- 5M. Saeed, P. Palacios, M.-D. Wei, E. Baskent, C.-Y. Fan, B. Uzlu, K.-T. Wang, A. Hemmetter, Z. X. Wang, D. Neumaier, M. C. Lemme, R. Negra, Adv. Mater. 2022, 34, 2108473.
- 6S. Ahmed, J. B. Yi, Nano-Micro Lett. 2017, 9, 50.
- 7S. Thurakkal, X. Y. Zhang, Adv. Sci. 2020, 7, 1902359.
- 8H. Yang, C. W. Tan, C. Y. Deng, R. Y. Zhang, X. M. Zheng, X. Z. Zhang, Y. Z. Hu, X. X. Guo, G. Wang, T. Jiang, Y. Zhang, G. Peng, H. L. Peng, X. A. Zhang, S. A. Qin, Small 2019, 15, 1904482.
- 9T. R. Li, H. L. Peng, Acc. Mater. Res. 2021, 2, 842.
- 10J. X. Wu, H. T. Yuan, M. M. Meng, C. Chen, Y. Sun, Z. Y. Chen, W. H. Dang, C. W. Tan, Y. J. Liu, J. B. Yin, Y. B. Zhou, S. Y. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. F. Liu, Y. L. Chen, B. H. Yan, H. L. Peng, Nat. Nanotechnol. 2017, 12, 530.
- 11C. W. Tan, M. Tang, J. X. Wu, Y. N. Liu, T. R. Li, Y. Liang, B. Deng, Z. J. Tan, T. Tu, Y. C. Zhang, C. Liu, J.-H. Chen, Y. Wang, H. L. Peng, Nano Lett. 2019, 19, 2148.
- 12R. U. R. Sagar, U. Khan, M. Galluzzi, S. Aslam, A. Nairan, T. Anwar, W. Ahmad, M. Zhang, T. X. Liang, ACS Appl. Electron. Mater. 2020, 2, 2123.
- 13X. Yang, Q. Zhang, Y. C. Song, Y. S. Fan, Y. W. He, Z. H. Zhu, Z. Q. Bai, Q. Luo, G. Wang, G. Peng, M. J. Zhu, S. Q. Qin, K. Novoselov, ACS Appl. Mater. Interfaces 2021, 13, 49153.
- 14Y. Liang, Y. J. Chen, Y. W. Sun, S. P. Xu, J. X. Wu, C. W. Tan, X. F. Xu, H. T. Yuan, L. X. Yang, Y. L. Chen, P. Gao, J. D. Guo, H. L. Peng, Adv. Mater. 2019, 31, 1901964.
- 15C. C. Zhang, T. Tu, J. Y. Wang, Y. C. Zhu, C. W. Tan, L. Chen, M. Wu, R. X. Zhu, Y. Z. Liu, H. X. Fu, J. Yu, Y. C. Zhang, X. Z. Cong, X. H. Zhou, J. J. Zhao, T. R. Li, Z. M. Liao, X. S. Wu, K. J. Lai, B. H. Yan, P. Gao, Q. Q. Huang, H. Xu, H. P. Hu, H. T. Liu, J. B. Yin, H. L. Peng, Nat. Mater. 2023, 22, 832.
- 16M. Q. Xie, S. L. Zhang, B. Cai, Y. Huang, Y. S. Zou, B. Guo, Y. Gu, H. B. Zeng, Nano Energy 2016, 28, 433.
- 17H. Oppermann, H. Göbel, P. Schmidt, H. Schadow, V. Vassilev, Naturforsch., B:J. Chem. Sci. 1999, 54, 261.
- 18T. Cheng, C. W. Tan, S. Q. Zhang, T. Tu, H. L. Peng, Z. R. Liu, J. Phys. Chem. C 2018, 122, 19970.
- 19Q. D. Fu, C. Zhu, X. X. Zhao, X. L. Wang, A. Chaturvedi, C. Zhu, X. W. Wang, Q. S. Zeng, J. D. Zhou, F. C. Liu, B. K. Tay, H. Zhang, S. J. Pennycook, Z. Liu, Adv. Mater. 2019, 31, 1804945.
- 20M. T. Hossain, P. K. Giri, J. Appl. Phys. 2021, 129, 175102.
- 21J. X. Wu, C. W. Tan, Z. J. Tan, Y. J. Liu, J. B. Yin, W. H. Dang, M. Z. Wang, H. L. Peng, Nano Lett. 2017, 17, 3021.
- 22F. Yang, J. Wu, A. Suwardi, Y. S. Zhao, B. Y. Liang, J. Jiang, J. W. Xu, D. Z. Chi, K. Hippalgaonkar, J. P. Lu, Z. H. Ni, Adv. Mater. 2021, 33, 2004786.
- 23Y. Xia, J. Wang, R. Chen, H. B. Wang, H. Xu, C. Z. Jiang, W. Q. Li, X. H. Xiao, Adv. Electron. Mater. 2022, 8, 2200126.
- 24L. Y. Dang, M. Q. Liu, G. G. Wang, D. Q. Zhao, J. C. Han, J. Q. Zhu, Z. Liu, Adv. Funct. Mater. 2022, 32, 2201020.
- 25J. X. Wu, C. G. Qiu, H. X. Fu, S. L. Chen, C. C. Zhang, Z. P. Dou, C. W. Tan, T. Tu, T. R. Li, Y. C. Zhang, Z. Y. Zhang, L.-M. Peng, P. Gao, B. H. Yan, H. L. Peng, Nano Lett. 2018, 19, 197.
- 26U. Khan, R. Z. Xu, A. Nairan, M. J. Han, X. S. Wang, L. G. Kong, J. K. Gao, L. Tang, Adv. Funct. Mater. 2024, 34, 2315522.
- 27P. Luo, F. W. Zhuge, F. K. Wang, L. Y. Lian, K. L. Liu, J. B. Zhang, T. Y. Zhai, ACS Nano 2019, 13, 9028.
- 28H. X. Fu, J. X. Wu, H. L. Peng, B. H. Yan, Phys. Rev. B 2018, 97, 241203.
- 29M. M. Meng, S. Y. Huang, C. W. Tan, J. X. Wu, X. B. Li, H. L. Peng, H. Q. Xu, Nanoscale 2019, 11, 10622.
- 30Y.-Y. Lv, L. Xu, S.-T. Dong, Y.-C. Luo, Y.-Y. Zhang, Y. B. Chen, S.-H. Yao, J. Zhou, Y. S. Cui, S. T. Zhang, M.-H. Lu, Y.-F. Chen, Phys. Rev. B 2019, 99, 195143.
- 31C. W. Tan, J. F. Jiang, J. Y. Wang, M. S. Yu, T. Tu, X. Y. Gao, J. C. Tang, C. C. Zhang, Y. C. Zhang, X. H. Zhou, L. M. Zheng, C. G. Qiu, H. L. Peng, Nano Lett. 2022, 22, 3770.
- 32L. Xu, Y.-C. Luo, Y.-Y. Lv, Y.-Y. Zhang, Y.-Z. Wu, S.-H. Yao, J. Zhou, Y. B. Chen, Y.-F. Chen, J. Phys.:Condens. Matter 2020, 32, 365705.
- 33C. C. Zhang, J. X. Wu, Y. W. Sun, C. W. Tan, T. R. Li, T. Tu, Y. C. Zhang, Y. Liang, X. H. Zhou, P. Gao, H. L. Peng, J. Am. Chem. Soc. 2020, 142, 2726.
- 34C. Chen, M. X. Wang, J. X. Wu, H. X. Fu, H. F. Yang, Z. Tian, T. Tu, H. Peng, Y. Sun, X. Xu, J. Jiang, N. B. M. Schröter, Y. W. Li, D. Pei, S. Liu, S. A. Ekahana, H. T. Yuan, J. M. Xue, G. Li, J. F. Jia, Z. K. Liu, B. H. Yan, H. L. Peng, Y. L. Chen, Sci. Adv. 2018, 4, aat8355.
- 35S. P. Xu, H. X. Fu, Y. Tian, T. Deng, J. Cai, J. X. Wu, T. Tu, T. R. Li, C. W. Tan, Y. Liang, C. C. Zhang, Z. Liu, Z. K. Liu, Y. L. Chen, Y. Jiang, B. H. Yan, H. L. Peng, Angew. Chem., Int. Ed. 2020, 59, 17938.
- 36W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Mater. Today 2017, 20, 116.
- 37F. K. Wang, L. G. Li, W. J. Huang, L. Li, B. Jin, H. Q. Li, T. Y. Zhai, Adv. Funct. Mater. 2018, 28, 1802707.
- 38P. Luo, F. W. Zhuge, Q. F. Zhang, Y. Q. Chen, L. Lv, Y. Huang, H. Q. Li, T. Y. Zhai, Nanoscale Horiz. 2019, 4, 26.
- 39K. Yuan, R. Y. Yin, X. Q. Li, Y. M. Han, M. Wu, S. L. Chen, S. Liu, X. L. Xu, K. Watanabe, T. Taniguchi, D. A. Muller, J. J. Shi, P. Gao, X. S. Wu, Y. Ye, L. Dai, Adv. Funct. Mater. 2019, 29, 1904032.
- 40B. Chen, T. Li, Q. F. Dong, E. Mosconi, J. F. Song, Z. L. Chen, Y. H. Deng, Y. Liu, S. Ducharme, A. Gruverman, F. De Angelis, J. S. Huang, Nat. Mater. 2018, 17, 1020.
- 41L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. C. Liu, L. Chang, D. Ichinose, H. Funakubo, W. J. Hu, T. Wu, Z. Liu, S. Dong, J. L. Wang, Sci. Adv. 2019, 5, aav3780.
- 42H. D. Lu, S. Glinsek, P. Buragohain, E. Defay, J. Iñiguez, A. Gruverman, Adv. Funct. Mater. 2020, 30, 2003622.
- 43W. J. Wang, Y. Meng, Y. X. Zhang, Z. M. Zhang, W. Wang, Z. X. Lai, P. S. Xie, D. J. Li, D. Chen, Q. Quan, D. Yin, C. T. Liu, Z. B. Yang, S. P. Yip, J. C. Ho, Adv. Mater. 2023, 35, 2210854.
- 44L. Tang, L. Y. Dang, M. J. Han, S. N. Li, U. Khan, W. J. Chen, Z. Y. Cai, L. G. Kong, Q. K. Wu, B. L. Liu, Q. C. Zhang, R. Z. Xu, X. L. Ma, Adv. Funct. Mater. 2024, 34, 2405898.
- 45L. Collins, Y. T. Liu, O. S. Ovchinnikova, R. Proksch, Acs Nano. 2019, 13, 8055.
- 46Z. Y. Zhu, X. P. Yao, S. Zhao, X. Lin, W. B. Li, J. Am. Chem. Soc. 2022, 144, 4541.
- 47D. Wang, L. M. Tang, X. X. Jiang, J. Y. Tan, M. D. He, X. J. Wang, K. Q. Chen, Adv. Electron. Mater. 2019, 5, 1800475.
- 48Y. Noda, C. Merschjann, J. Tarábek, P. Amsalem, N. Koch, M. J. Bojdys, Angew. Chem., Int. Ed. 2019, 58, 9394.
- 49M. Z. Lin, Z. J. Zheng, L. Yang, M. S. Luo, L. H. Fu, B. F. Lin, C. H. Xu, Adv. Mater. 2022, 34, 2107309.
- 50J. M. Mativetsky, J. Tarver, X. F. Yang, B. E. Koel, Y. L. Loo, Org. Electron. 2014, 15, 631.