Controllable Transition Metal Cations Doping Enable Efficient and Spectral Stable Pure-Red Perovskite QLED
Yuqin Su
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorQunqing Lin
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXinyi Lv
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYan Li
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKun Zhang
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXiuting Wu
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYing Zhou
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYashuang Guo
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorMaria A. Sandzhieva
School of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorSergey V. Makarov
School of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorCorresponding Author
Hengyang Xiang
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haibo Zeng
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYuqin Su
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorQunqing Lin
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXinyi Lv
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYan Li
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKun Zhang
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXiuting Wu
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYing Zhou
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorYashuang Guo
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorMaria A. Sandzhieva
School of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorSergey V. Makarov
School of Physics and Engineering, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorCorresponding Author
Hengyang Xiang
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haibo Zeng
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Mixed-halide perovskite plays important role in wide-color gamut displays as a vital material for three primary colors. However, halide segregation and caused unstable spectra are the intrinsic problem in mixed-halide perovskite light-emitting diodes (PeLEDs) originating from the lattice strain and the resulting defects in perovskite quantum dots (PQDs). Here, smaller transition metal cations are applied to replace Pb2+ and release lattice strain, which avoids halogen escaping/halide vacancies forming to ensure high photoluminescence quantum yield (PLQY) and stable spectra. However, the actual doping amount is limited by ionic size and chemical environment, which will affect the improvement of optoelectronic performance. Thus, this study proposes a strategy by introducing tri-n-octylphosphine to coordinate strongly with metal cations and catch them to participate the nucleation-growth process. Through doping transition metal cations effectively, the CsPb(BrI)3 PQDs show high PLQY (92%) and long lifetime (107.83 ns). Further, highly efficient pure-red PeLEDs with highest external quantum efficiency of 16.86% is fabricated and the spectrum can be stabilized at 630 nm with only 1 nm red-shift under bias, showing the promising potential of PQDs for next-generation display.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202412227-sup-0001-SuppMat.docx19.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 2Q. Shan, J. Song, Y. Zou, J. Li, L. Xu, J. Xue, Y. Dong, B. Han, J. Chen, H. Zeng, Small 2017, 13, 1701770.
- 3Q. V. Le, K. Hong, H. W. Jang, S. Y. Kim, Adv. Electron. Mater. 2018, 4, 1800335.
- 4R. Wang, H. Xiang, Y. Li, Y. Zhou, Q. Shan, Y. Su, Z. Li, Y. Wang, H. Zeng, Adv. Funct. Mater. 2023, 33, 2215189.
- 5Q. Shan, Y. Dong, H. Xiang, D. Yan, T. Hu, B. Yuan, H. Zhu, Y. Wang, H. Zeng, Adv. Funct. Mater. 2024, 34, 2401284.
- 6X. Zhou, J. Zhang, X. Tong, Y. Sun, H. Zhang, Y. Min, Y. Qian, Adv. Optical Mater. 2022, 10, 2101517.
- 7Y. Zhou, T. Fang, G. Liu, H. Xiang, L. Yang, Y. Li, R. Wang, D. Yan, Y. Dong, B. Cai, H. Zeng, Adv. Funct. Mater. 2021, 31, 2106871.
- 8H. Wang, Y. Dou, P. Shen, L. Kong, H. Yuan, Y. Luo, X. Zhang, X. Yang, Small 2020, 16, 2001062.
- 9J. Zhang, T. Zhang, Z. Ma, F. Yuan, X. Zhou, H. Wang, Z. Liu, J. Qing, H. Chen, X. Li, S. Su, J. Xie, Z. Shi, L. Hou, C. Shan, Adv. Mater. 2023, 35, 2209002.
- 10S. Sun, M. Lu, P. Lu, X. Li, F. Zhang, Z. Wu, T. Wang, F. Yan, T. Li, T. Feng, Y. Zhang, X. Bai, Nano Lett. 2024, 24, 5631.
- 11C. G. Bischak, C. L. Hetherington, H. Wu, S. Aloni, D. F. Ogletree, D. T. Limmer, N. S. Ginsberg, Nano Lett. 2017, 17, 1028.
- 12M. I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E. H. Sargent, Nat. Energy 2018, 3, 648.
- 13L. A. Muscarella, B. Eheler, Joule 2022, 6, 2016.
- 14G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. De La Peña, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, Z. Tan, Adv. Mater. 2016, 28, 3528.
- 15P. Vashishtha, J. E. Halpert, Chem. Mater. 2017, 29, 5965.
- 16H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, Nat. Commun. 2019, 10, 1088.
- 17X. Ma, Y. Ye, Y. Xiao, S. Feng, C. Zhang, K. Xia, F. Hu, M. Xiao, X. Wang, ACS Appl. Mater. Interfaces 2024, 16, 65142.
- 18T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, J. Kido, Nat. Photon. 2018, 12, 681.
- 19P. Lu, M. Lu, F. Zhang, F. Qin, S. Sun, Y. Zhang, W. W. Yu, X. Bai, Nano Energy 2023, 108, 108208.
- 20M. Xie, J. Guo, X. Zhang, C. Bi, X. Sun, H. Li, L. Zhang, D. Binks, G. Li, W. Zheng, J. Tian, Adv. Funct. Mater. 2023, 33, 2300116.
- 21J.-N. Yang, Y. Song, J.-S. Yao, K.-H. Wang, J.-J. Wang, B.-S. Zhu, M.-M. Yao, S. U. Rahman, Y.-F. Lan, F.-J. Fan, H.-B. Yao, J. Am. Chem. Soc. 2020, 142, 2956.
- 22Y.-K. Wang, H. Wan, S. Teale, L. Grater, F. Zhao, Z. Zhang, H.-W. Duan, M. Imran, S.-D. Wang, S. Hoogland, L.-S. Liao, Nature 2024, 629, 586.
- 23Y. Hassan, J. H. Park, M. L. Crawford, A. Sadhanala, J. Lee, J. C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S. H. Park, M. H. Song, F. De Angelis, C. Y. Wong, R. H. Friend, B. R. Lee, H. J. Snaith, Nature 2021, 591, 72.
- 24J. Zhang, B. Cai, X. Zhou, F. Yuan, C. Yin, H. Wang, H. Chen, X. Ji, X. Liang, C. Shen, Y. Wang, Z. Ma, J. Qing, Z. Shi, Z. Hu, L. Hou, H. Zeng, S. Bai, F. Gao, Adv. Mater. 2023, 35, 2303938.
- 25X. Zhou, M. Yang, C. Shen, L. Lian, L. Hou, J. Zhang, Nano Lett. 2024, 24, 3719.
- 26C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W. W. Yu, Adv. Mater. 2016, 28, 10088.
- 27X. Cheng, Y. Zhai, X. Wang, X. Cao, D. Guan, H. Zhang, Q. Zhu, S. Fang, L. Wang, J. Lumin. 2024, 271, 120610.
- 28Y. Cai, Y. Yang, H. Dong, T. Xuan, X. Tang, R.-J. Xie, J. Mater. Chem. C 2023, 11, 9486.
- 29Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu, J.-L. Gu, L.-R. Zheng, O. M. Bakr, H.-T. Sun, J. Am. Chem. Soc. 2018, 140, 9942.
- 30M. K. Gangishetty, S. N. Sanders, D. N. Congreve, ACS Photonics 2019, 6, 1111.
- 31J. Cao, S. X. Tao, P. A. Bobbert, C. Wong, N. Zhao, Adv. Mater. 2018, 30, 1707350.
- 32Y. Zhao, P. Miao, J. Elia, H. Hu, X. Wang, T. Heumueller, Y. Hou, G. J. Matt, A. Osvet, Y. Chen, M. Tarragó, D. de Ligny, T. Przybilla, P. Denninger, J. Will, J. Zhang, X. Tang, N. Li, C. He, A. Pan, A. J. Meixner, E. Spiecker, D. Zhang, C. J. Brabec, Nat. Commun. 2020, 11, 6328.
- 33J. Zhang, L. Zhang, P. Cai, X. Xue, M. Wang, J. Zhang, G. Tu, Nano Energy 2019, 62, 434.
- 34X. Shen, Y. Zhang, S. V. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang, M. Lu, L. Zhang, C. Sun, D. Zhao, G. Qin, X. Bai, W. W. Yu, A. L. Rogach, Nano Lett. 2019, 19, 1552.
- 35J. Li, J. Chen, L. Xu, S. Liu, S. Lan, X. Li, J. Song, Mater. Chem. Front. 2020, 4, 1444.
- 36X. Chen, Z. Sun, B. Cai, X. Li, S. Zhang, D. Fu, Y. Zou, Z. Fan, H. Zeng, Adv. Funct. Mater. 2022, 32, 2112129.
- 37Y. Zhang, D. Tu, L. Wang, C. Li, Y. Liu, X. Chen, Mater. Chem. Front. 2024, 8, 192.
- 38Y. Liu, D. Li, L. Zhang, Y. Chen, C. Geng, S. Shi, Z. Zhang, W. Bi, S. Xu, Chem. Mater. 2020, 32, 1904.
- 39D. Jia, J. Chen, X. Mei, W. Fan, S. Luo, M. Yu, J. Liu, X. Zhang, Energy Environ. Sci. 2021, 14, 4599.
- 40H. Cheng, Y. Zheng, Y. Lou, M. Sun, G. Zhang, H. Wang, T. Wu, Y. Bai, Y. Shao, Adv. Electron. Mater. 2025, 11, 2400334.