Synergistic Hydrophilic and Electrostatic Induction for Liquid Photonic Crystals of Poly (Acrylic Acid)-block-Polystyrene Colloidal Nanospheres From RAFT-Mediated Emulsion Polymerization
Xu Zhang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorZhujun Wang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Yi Huang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorNicholas Kai Shiang Teo
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorYexi Mo
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorTina Hsia
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorJianjun Guo
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorMin Shao
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Jianzhong Shao
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
San H. Thang
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXu Zhang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorZhujun Wang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Yi Huang
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorNicholas Kai Shiang Teo
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorYexi Mo
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorTina Hsia
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorJianjun Guo
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorMin Shao
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Jianzhong Shao
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
San H. Thang
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Liquid Photonic Crystals (LPCs) represent a distinctive category of photonic materials that merges the ordered structure of colloidal photonic crystals with the dynamic nature of liquids, allowing for flexibility in tuning their assembly and optical properties in response to external stimuli. However, the requirement of high solid content and high stability of these LPCs continue to pose a significant challenge in their controlled synthesis, efficient assembly, and system stabilization. Herein, highly charged poly (acrylic acid)-b-polystyrene (PAA-b-PS) colloidal nanospheres are synthesized using RAFT-mediated emulsion polymerization. Under the hydration and electrostatic interactions induced by selected polymeric inducers, PAA-b-PS colloidal nanospheres with a uniform carboxylate anion surface are synthesized, capable of forming iridescent LPCs at an overall low solid content (20 wt%) containing localized areas of high solid content. Furthermore, carboxymethyl cellulose (CMC), one of the polymeric inducers, undergoes photosensitive modification to facilitate the digital light processing (DLP) 3D printed LPCs hydrogel models. This strategy offers innovative approaches for the synthesis, assembly, and 3D-printed LPC materials, promising applications in smart displays, sensory systems, and optical devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410729-sup-0001-SuppMat.docx8.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Zhu, Q. Fu, K. Chen, J. Ge, Angew. Chem., Int. Ed. 2018, 57, 252.
- 2X. Yu, J. Wu, J. Wang, N. Zhang, R. Qing, G. Li, Q. Li, S. Chen, Adv. Mater. 2024, 36, 2312879.
- 3D. Li, J.-M. Wu, Z.-H. Liang, L.-Y. Li, X. Dong, S.-K. Chen, T. Fu, X.-L. Wang, Y.-Z. Wang, F. Song, Adv. Sci. 2023, 10, 2206290.
- 4Y. Fang, H. Li, X. Wang, M. Zhu, J. Guo, C. Wang, ACS Appl. Nano Mater 2022, 5, 11249.
- 5Q. Fu, W. Yu, G. Bao, J. Ge, Nat. Commun. 2022, 13, 7007.
- 6Q. Fu, H. Zhu, J. Ge, Adv. Funct. Mater. 2018, 28, 1804628.
- 7M. Wang, C. Nie, J. Liu, S. Wu, Nat. Commun. 2023, 14, 1000.
- 8Y. Fang, W. Fei, X. Shen, J. Guo, C. Wang, Mater. Horiz 2021, 8, 2079.
- 9A. Smirnov, T. Pogosian, S. Povarov, E. Gunina, V. Milichko, M. Morozov, A. Vinogradov, Adv. Opt. Mater. 2024, 12, 2401002.
- 10R. M. Pallares, X. Su, S. H. Lim, N. T. K. Thanh, J. Mater. Chem. C 2016, 4, 53.
- 11Y. Cao, L. Lewis, W. Y. Hamad, M. J. MacLachlan, Adv. Mater. 2019, 31, 1808186.
- 12A. J. J. Kragt, N. C. M. Zuurbier, D. J. Broer, A. P. H. J. Schenning, ACS Appl. Mater. Interfaces 2019, 11, 28172.
- 13C. Huang, Y. Shang, J. Hua, Y. Yin, X. Du, ACS Nano 2023, 17, 10269.
- 14Y. Liu, X. Hou, Y. Song, M. Li, Interdiscip. Mater. 2024, 3, 54.
- 15L. Li, Z.-B. Wen, D. Li, Z.-Y. Xu, L.-Y. Shi, K.-K. Yang, Y.-Z. Wang, ACS Appl. Mater. Interfaces 2023, 15, 21425.
- 16W. Park, H. Park, Y. Choi, D. K. Yoon, Adv. Opt. Mater. 2022, 10, 2201099.
- 17D.-K. Lee, J. M. Choi, C. G. Jhun, J.-K. Song, J. Disp. Technol. 2016, 12, 1013.
- 18Q. Guo, X. Wang, J. Guo, C. Wang, Nanoscale 2023, 15, 18825.
- 19J. Bao, Z. Wang, C. Shen, R. Huang, C. Song, Z. Li, W. Hu, R. Lan, L. Zhang, H. Yang, Small Methods 2022, 6, 2200269.
- 20B. Gollapelli, S. Potu, R. Rajaboina, J. Vallamkondu, Mater. Adv 2024, 5, 7113.
- 21X. Liang, H. Hu, Z. Zheng, M. He, M. Li, N. Lv, N. Shen, W.-H. Zhu, Ind. Eng. Chem. Res. 2023, 62, 9961.
- 22Q. Fan, Z. Li, Y. Li, A. Gao, Y. Zhao, D. Yang, C. Zhu, T. V. Brinzari, G. Xu, L. Pan, L. T. Vuong, Y. Yin, J. Am. Chem. Soc. 2023, 145, 28191.
- 23L. González-Urbina, K. Baert, B. Kolaric, J. Pérez-Moreno, K. Clays, Chem. Rev. 2012, 112, 2268.
- 24G. Von Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chem. Soc. Rev. 2013, 42, 2528.
- 25Z. Zhang, B. Wei, Y. Hu, D. Yang, D. Ma, S. Huang, Cell Rep. Phys. Sci. 2023, 4, 101387.
- 26X. Li, X. Liang, X. Wang, Y. Li, G. Liu, M. Hu, L. Zhou, J. Shao, Dyes Pigments 2023, 210, 11097.
- 27X. Li, X. Wang, Y. Wang, M. Hu, G. Liu, L. Chai, L. Zhou, J. Shao, Y. Li, Small 2024, 20, 2302550.
- 28J. Ge, Y. Hu, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 7428.
- 29C. Wang, X. Zhang, H. Zhu, Q. Fu, J. Ge, J. Mater. Chem. C 2020, 8, 989.
- 30Y. Wang, X. Li, Y. Zhang, X. Wang, Y. Li, Y. Liu, D. Wang, G. Liu, Y. Huang, J. Shao, J. Mater. Chem. C 2023, 12, 254.
- 31X. Wang, X. Liang, Y. Li, X. Li, G. Liu, M. Hu, Y. Liu, Y. Huang, L. Zhou, W. Zhou, J. Shao, Chem. Eng. J. 2024, 483, 149053.
- 32K. Xu, B. Fan, K. Putera, M. Wawryk, J. Wan, B. Peng, M. M. Banaszak Holl, A. F. Patti, S. H. Thang, Macromolecules 2022, 55, 5301.
- 33G. K. K. Clothier, T. R. Guimarães, S. W. Thompson, J. Y. Rho, S. Perrier, G. Moad, P. B. Zetterlund, Chem. Soc. Rev. 2023, 52, 3438.
- 34J. Chiefari, Y. K., (Bill) Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
- 35G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2005, 58, 379.
- 36G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
- 37G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2012, 65, 985.
- 38G. Moad, E. Rizzardo, S. H. Thang, Chem.- Asian J 2013, 8, 1634.
- 39W.-D. He, X.-L. Sun, W.-M. Wan, C.-Y. Pan, Macromolecules 2011, 44, 3358.
- 40J. Liao, C. Ye, J. Guo, C. E. Garciamendez-Mijares, P. Agrawal, X. Kuang, J. O. Japo, Z. Wang, X. Mu, W. Li, T. Ching, L. S. Mille, C. Zhu, X. Zhang, Z. Gu, Y. S. Zhang, Mater. Today 2022, 56, 29.
- 41G. H. Lee, T. M. Choi, B. Kim, S. H. Han, J. M. Lee, S.-H. Kim, ACS Nano 2017, 11, 11350.
- 42G. Wu, H. Cho, D. A. Wood, A. D. Dinsmore, S. Yang, J. Am. Chem. Soc. 2017, 139, 5095.
- 43M. Kępińska, A. Starczewska, P. Duka, Opt. Mater. 2017, 73, 437.
- 44R. J. Gehr, R. W. Boyd, Chem. Mater. 1996, 8, 1807.
- 45D. Antonioli, S. Deregibus, G. Panzarasa, K. Sparnacci, M. Laus, L. Berti, L. Frezza, M. Gambini, L. Boarino, E. Enrico, D. Comoretto, Polym. Int. 2012, 61, 1294.
- 46Y. Hu, S. Yu, B. Wei, D. Yang, D. Ma, S. Huang, Mater. Horiz 2023, 10, 3895.
- 47Y. Komoda, M. Ueyama, A. Sofue, A. Nishikawa, N. Ohmura, Colloids Surf. Physicochem. Eng. Asp. 2024, 683, 133064.
- 48C. L. Cooper, T. Cosgrove, J. S. Van Duijneveldt, M. Murray, S. W. Prescott, Soft Matter 2013, 9, 7211.
- 49M. Hyrycz, M. Ochowiak, A. Krupińska, S. Włodarczak, M. Matuszak, Sci. Total Environ. 2022, 820, 153328.
- 50Y. Zhang, Y. Zheng, F. Shu, R. Zhou, B. Bao, S. Xiao, K. Li, Q. Lin, L. Zhu, Z. Xia, Carbohydr. Polym. 2022, 276, 118752.
- 51X. Jiang, Z. Yang, J. Zhang, H. Liang, H. Wang, J. Lu, Int. J. Biol. Macromol. 2024, 263, 130190.
- 52M. Monier, D. A. Abdel-Latif, H. F. Ji, React. Funct. Polym. 2016, 102, 137.