Ultrathin Azine Covalent Organic Framework Membrane for Highly-Efficient Nanofluidic Osmotic Energy Generator
He Wen
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorJing Wang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074 China
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZiwen Dai
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorXing Liu
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorSha Liang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorFang Xu
Wenzhou Haichen Technology Development Co., Ltd., Wenzhou, Zhejiang, 325700 China
Search for more papers by this authorZhen Hu
Wuhan Huzhenyu Environmental Technology Co., Ltd., Wuhan, Hubei, 430000 China
Search for more papers by this authorZhao Yang
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorPengrui Jin
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorJiakuan Yang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorBart Van der Bruggen
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorCorresponding Author
Shushan Yuan
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Hubei Three Gorges Laboratory, Yichang, 443007 China
E-mail: [email protected]
Search for more papers by this authorHe Wen
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorJing Wang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074 China
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZiwen Dai
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorXing Liu
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorSha Liang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorFang Xu
Wenzhou Haichen Technology Development Co., Ltd., Wenzhou, Zhejiang, 325700 China
Search for more papers by this authorZhen Hu
Wuhan Huzhenyu Environmental Technology Co., Ltd., Wuhan, Hubei, 430000 China
Search for more papers by this authorZhao Yang
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorPengrui Jin
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorJiakuan Yang
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Search for more papers by this authorBart Van der Bruggen
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001 Belgium
Search for more papers by this authorCorresponding Author
Shushan Yuan
Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074 China
Hubei Three Gorges Laboratory, Yichang, 443007 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Charged covalent organic framework (COF) membranes have gained wide interest as the key component in the reverse electrodialysis technique to harness salinity energy. However, maintaining rapid ion transport and high selectivity in a Ca2+-rich environment remains a formidable challenge. Herein, a highly cation-conductive azine COF membrane is synthesized via a layer-by-layer chemical reaction between 2,4-dihydroxy-1,3,5-diphenyltrialdehyde (DHTA) and hydrazine hydrate (HZ). The osmotic energy generator based on this membrane delivers a high power density of 17.8 W m−2 under 2.5 M/0.05 M CaCl2, outperforming the TFP-HZ membrane (3.2 W m−2), commercial benchmark (5 W m−2), and other literature reported membranes owing to the simultaneous modulation of charges in angstrom scale channels and selective layer thickness. Moreover, this osmotic power density is comparable to that in a NaCl gradient (2.5 M/0.05 M, 16.9 W m−2), which is rare. These results indicate that the DHTA-HZ membrane is highly suitable for application in hypersaline environments containing Ca2+, serving as an inspiration for the development of COF-based nanofluidic membranes with high power output efficiency in a practical high-salinity environment.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202410140-sup-0001-SuppMat.pdf4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, M. Meinshausen, Nature 2016, 534, 631.
- 2a) D. J. Davidson, Nat. Energy 2019, 4, 254; b) F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489; c) B. L. Zhou, Z. W. Lin, Z. J. Xie, X. T. Fu, Z. H. Yuan, C. L. Jiao, X. Z. Qin, D. D. Ye, Nano Energy 2023, 115, 108693; d) B. Yao, Z. Fang, Y. Hu, Z. Ye, X. Peng, J. Membr. Sci. 2024, 709, 123116.
- 3a) Z. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622; b) Y. Shao, Y. Xu, Front. Environ. Sci. Eng. 2023, 17, 156; c) Y. D. Wu, T. Zhou, Y. Wang, Y. C. Qian, W. P. Chen, C. C. Zhu, B. Niu, X. Y. Kong, Y. F. Zhao, X. B. Lin, L. Jiang, L. P. Wen, Nano Energy 2022, 92, 106709.
- 4a) J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic, Nature 2016, 536, 197; b) K. Xiao, L. Jiang, M. Antonietti, Joule 2019, 3, 2364; c) H. Fan, Y. Huang, N. Y. Yip, Front. Environ. Sci. Eng. 2023, 17, 25.
- 5a) J. Wang, Z. Song, M. He, Y. Qian, D. Wang, Z. Cui, Y. Feng, S. Li, B. Huang, X. Kong, J. Han, L. Wang, Nat. Commun. 2024, 15, 2125; b) T. L. Xiao, X. J. Li, Z. Y. Liu, B. X. Lu, J. Zhai, X. G. Diao, Nano Energy 2022, 103, 107782; c) Y. S. Su, S. C. Hsu, P. H. Peng, J. Y. Yang, M. Y. Gao, L. H. Yeh, Nano Energy 2021, 84, 105930; d) R. Y. Duan, J. L. Zhou, X. Zheng, X. Y. Ma, R. Zhai, J. R. Hao, Y. H. Zhou, C. Teng, L. Jiang, Adv. Funct. Mater. 2024, 34, 2311258.
- 6a) A. Siria, M.-L. Bocquet, L. Bocquet, Nat. Rev. Chem. 2017, 1, 91; b) Y. Zhou, Q. Ji, C. Hu, H. Liu, J. Qu, Front. Environ. Sci. Eng. 2023, 17, 11; c) M. Jarin, Z. Dou, H. Gao, Y. Chen, X. Xie, Front. Environ. Sci. Eng. 2023, 17, 16.
- 7a) J. Wang, Z. Song, M. He, Y. Qian, D. Wang, Z. Cui, Y. Feng, S. Li, B. Huang, X. Kong, Nat. Commun. 2024, 15, 2125; b) T. Zhou, T. Liu, S. Huang, X. He, J. Zhao, L. Shi, H. Yan, L. Wen, Desalination 2024, 591, 118036.
- 8H. Zhang, X. Li, J. Hou, L. Jiang, H. Wang, Chem. Soc. Rev. 2022, 51, 2224.
- 9B. Yilmaz, A. E. Pazarceviren, A. Tezcaner, Z. Evis, Microchem. J. 2020, 155, 104713.
- 10C. Maffeo, S. Bhattacharya, J. Yoo, D. Wells, A. Aksimentiev, Chem. Rev. 2012, 112, 6250.
- 11a) Y. Fu, X. Guo, Y. Wang, X. Wang, J. Xue, Nano Energy 2019, 57, 783; b) K. Jeong, S. Park, G. Y. Jung, S. H. Kim, Y.-H. Lee, S. K. Kwak, S.-Y. Lee, J. Am. Chem. Soc. 2019, 141, 5880.
- 12a) T. Zhu, Y. Kong, B. Lyu, L. Cao, B. Shi, X. Wang, X. Pang, C. Fan, C. Yang, H. Wu, Z. Jiang, Nat. Commun. 2023, 14, 5926; b) J. Yang, B. Tu, G. Zhang, P. Liu, K. Hu, J. Wang, Z. Yan, Z. Huang, M. Fang, J. Hou, Q. Fang, X. Qiu, L. Li, Z. Tang, Nat. Nanotechnol. 2022, 17, 622.
- 13L. Cao, I. C. Chen, C. Chen, D. B. Shinde, X. Liu, Z. Li, Z. Zhou, Y. Zhang, Y. Han, Z. Lai, J. Am. Chem. Soc. 2022, 144, 12400.
- 14a) M. Y. Chen, K. Yang, J. Wang, H. J. Sun, X. H. Xia, C. Wang, Adv. Funct. Mater. 2023, 33, 2302427; b) C. Wang, J. D. Tang, L. Y. Li, J. H. Wan, Y. C. Ma, Y. H. Jin, J. B. Liu, H. Wang, Q. Q. Zhang, Adv. Funct. Mater. 2022, 32, 2204068.
- 15Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014, 50, 13825.
- 16a) C. Wang, J. Tang, L. Li, J. Wan, Y. Ma, Y. Jin, J. Liu, H. Wang, Q. Zhang, Adv. Funct. Mater. 2022, 32, 2204068; b) C. Yin, M. Liu, Z. Zhang, M. Wei, X. Shi, Y. Zhang, J. Wang, Y. Wang, J. Am. Chem. Soc. 2023, 145, 11431.
- 17R. A. Maia, F. L. Oliveira, M. Nazarkovsky, P. M. Esteves, Cryst. Growth Des. 2018, 18, 5682.
- 18a) D. Ongari, A. V. Yakutovich, L. Talirz, B. Smit, ACS Cent. Sci. 2019, 5, 1663; b) J. Lu, F. Lin, Q. Wen, Q.-Y. Qi, J.-Q. Xu, X. Zhao, New J. Chem. 2019, 43, 6116.
- 19Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. B. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Commun. 2022, 13, 3935.
- 20C. W. Chu, A. R. Fauziah, L. H. Yeh, Angew. Chem., Int. Ed. 2023, 62, 202303582.
- 21H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862.
- 22Y. Lv, H. C. Yang, H. Q. Liang, L. S. Wan, Z. K. Xu, J. Membr. Sci. 2015, 476, 50.
- 23C. Zhang, T. Xiao, J. He, B. Lu, X. Li, J. Zhai, X. Fan, Small 2023, 19, 2301512.
- 24M. Matsumoto, L. Valentino, G. M. Stiehl, H. B. Balch, A. R. Corcos, F. Wang, D. C. Ralph, B. J. Mariñas, W. R. Dichtel, Chem 2018, 4, 308.