Self-Healing and Antifreezing/Antidrying Conductive Eutectohydrogel-Based Biosignal Monitoring Multisensors with Integrated Supercapacitor
Jinyoung Lee
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorSomin Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorJung Wook Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorJiyoon Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorYeonji Choi
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorMihyeon Park
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorDong Sik Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorHanchan Lee
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorSeojin Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorYongju Kim
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Jeong Sook Ha
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorJinyoung Lee
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorSomin Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorJung Wook Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorJiyoon Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorYeonji Choi
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorMihyeon Park
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorDong Sik Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorHanchan Lee
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorSeojin Kim
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorYongju Kim
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Search for more papers by this authorCorresponding Author
Jeong Sook Ha
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
A novel self-healing and antifreezing/antidrying conductive eutectohydrogel, ideal for wearable multifunctional sensors and supercapacitors, is reported. Conductive eutectohydrogel with self-healing and facilely tunable mechanical performance is obtained by incorporation of trehalose and phytic acid as reversible cross-linkers into a polyacrylamide network, forming the dynamic hydrogen bonding and electrostatic interactions. Furthermore, combined use of deep eutectic solvent with water ensures the air stability as well as the antifreezing/antidrying characteristics. The synthesized eutectohydrogel exhibits a self-healing efficiency of 90.7% after 24 h at room temperature, Young's modulus of 140.9 kPa, and strain at break of 352.8%. With the eutectohydrogel as a versatile platform, self-healing strain and temperature sensors, electrocardiogram electrodes, and supercapacitor are fabricated, recovering the device performance after self-healing from complete bisection and exhibiting stable performance over a wide temperature range from −20 to 50 °C. With a vertically integrated patch device of supercapacitor and strain sensor attached onto skin, various body movements are successfully detected using the energy stored in the supercapacitor, without performance degradation even after self-healing from complete bisection of the full patch device. This work demonstrates high potential application of the synthesized eutectohydrogel to flexible wearable devices featuring durability and longevity.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409365-sup-0001-SuppMat.docx963.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Qi, R. Yang, Z. Wang, Y. Liu, Q. Zhang, B. He, K. Li, Q. Yang, L. Wei, C. Pan, M. Chen, Adv. Funct. Mater. 2023, 33, 2214479; b) M. Khatib, O. Zohar, H. Haick, Adv. Mater. 2021, 33, 2004190.
- 2a) K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S. S. Lee, J. S. Ha, Adv. Mater. 2020, 32, 2002180; b) H. Park, C. Song, S. W. Jin, H. Lee, K. Keum, Y. H. Lee, G. Lee, Y. R. Jeong, J. S. Ha, Nano Energy 2021, 83, 105837.
- 3J. Kang, J. B. H. Tok, Z. Bao, Nat. Electron. 2019, 2, 144.
- 4J. Lee, M. W. M. Tan, K. Parida, G. Thangavel, S. A. Park, T. Park, P. S. Lee, Adv. Mater. 2020, 32, 1906679.
- 5H. Liu, C. Du, L. Liao, H. Zhang, H. Zhou, W. Zhou, T. Ren, Z. Sun, Y. Lu, Z. Nie, F. Xu, J. Zhu, W. Huang, Nat. Commun. 2022, 13, 3420.
- 6Y. Lee, W. J. Song, J. Y. Sun, Mater. Today Phys. 2020, 15, 100258.
- 7T. Ye, J. Wang, Y. Jiao, L. Li, E. He, L. Wang, Y. Li, Y. Yun, D. Li, J. Lu, H. Chen, Q. Li, F. Li, R. Gao, H. Peng, Y. Zhang, Adv. Mater. 2022, 34, 2105120.
- 8a) Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano 2013, 7, 4042; b) H. Li, T. Lv, H. Sun, G. Qian, N. Li, Y. Yao, T. Chen, Nat. Commun. 2019, 10, 536.
- 9K. Fan, W. Wei, Z. Zhang, B. Liu, W. Feng, Y. Ma, X. Zhang, Chem. Eng. J. 2022, 449, 137878.
- 10J. Kim, J. W. Kim, K. Keum, H. Lee, G. Jung, M. Park, Y. H. Lee, S. Kim, J. S. Ha, Chem. Eng. J. 2023, 457, 141278.
- 11Q. Lu, H. Li, Z. Tan, ACS Appl. Mater. Interfaces 2023, 15, 34055.
- 12a) B. B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chem. Rev. 2021, 121, 1232; b) Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren, C. Shao, R. Sun, Nano Energy 2022, 98, 107284.
- 13Y. Liang, K. Wang, J. Li, H. Wang, X. Q. Xie, Y. Cui, Y. Zhang, M. Wang, C. S. Liu, Adv. Funct. Mater. 2021, 31, 2104963.
- 14a) Y. Li, D. Yang, Z. Wu, F.-L. Gao, X.-Z. Gao, H.-Y. Zhao, X. Li, Z.-Z. Yu, Nano Energy 2023, 109, 108324; b) X. Yu, H. Zhang, Y. Wang, X. Fan, Z. Li, X. Zhang, T. Liu, Adv. Funct. Mater. 2022, 32, 2204366; c) J. Y. Oh, D. Son, T. Katsumata, Y. Lee, Y. Kim, J. Lopez, H.-C. Wu, J. Kang, J. Park, X. Gu, J. Mun, N. G.-J. Wang, Y. Yin, W. Cai, Y. Yun, J. B.-H. Tok, Z. Bao, Sci. Adv. 2019, 5, eaav3097.
- 15a) K. X. Hou, S. P. Zhao, D. P. Wang, P. C. Zhao, C. H. Li, J. L. Zuo, Adv. Funct. Mater. 2021, 31, 2107006; b) D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa, J. Y. Oh, J. W. To, J. Mun, T. Katsumata, Y. Liu, A. F. McGuire, M. Krason, F. Molina-Lopez, J. Ham, U. Kraft, Y. Lee, Y. Yun, J. B. H. Tok, Z. Bao, Nat. Nanotechnol. 2018, 13, 1057.
- 16a) K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, P. S. Lee, Nat. Commun. 2019, 10, 2158; b) C. Li, P. Wang, D. Zhang, Nano Energy 2023, 109, 108285.
- 17Y. Choi, M. Park, S. Kim, K. Gong, J. Wook Kim, D. Sik Kim, J. Lee, G. Jung, J. Kim, W. Yang, D.-K. Lim, J. Sook Ha, Chem. Eng. J. 2024, 488, 150931.
- 18a) J. W. Kim, H. Park, G. Lee, Y. R. Jeong, S. Y. Hong, K. Keum, J. Yoon, M. S. Kim, J. S. Ha, Adv. Funct. Mater. 2019, 29, 1905968; b) B. Li, F. Xu, T. Guan, Y. Li, J. Sun, Adv. Mater. 2023, 35, 2211456.
- 19Z. Wang, Y. Ren, Y. Zhu, L. Hao, Y. Chen, G. An, H. Wu, X. Shi, C. Mao, Angew. Chem., Int. Ed. 2018, 57, 9008.
- 20a) A. J. D'Angelo, M. J. Panzer, Chem. Mater. 2019, 31, 2913; b) J. W. Kim, S. Kim, Y. R. Jeong, J. Kim, D. S. Kim, K. Keum, H. Lee, J. S. Ha, Chem. Eng. J. 2022, 430, 132685.
- 21C. H. Li, J. L. Zuo, Adv. Mater. 2020, 32, 1903762.
- 22L. Xu, Y. Chen, M. Yu, M. Hou, G. Gong, H. Tan, N. Li, J. Xu, Nano Energy 2023, 107, 108119.
- 23H. Sun, B. Zhang, L. Lu, Z. Chen, Y. Huo, W. Li, B. Zhang, J. Song, Chem. Eng. J. 2023, 451, 139051.
- 24S. He, H. Ren, Y. Chen, D. Rong, Q. Rong, J. Energy Storage 2023, 72, 108619.
10.1016/j.est.2023.108619 Google Scholar
- 25B. Huang, W. Liu, Y. Lan, Y. Huang, L. Fu, B. Lin, C. Xu, Chem. Eng. J. 2024, 480, 147888.
- 26a) Y. Nie, D. Yue, W. Xiao, W. Wang, H. Chen, L. Bai, L. Yang, H. Yang, D. Wei, Chem. Eng. J. 2022, 436, 135243; b) R. Hu, J. Zhao, Y. Wang, Z. Li, J. Zheng, Chem. Eng. J. 2019, 360, 334; c) T. Wang, Y. Zhang, Q. Liu, W. Cheng, X. Wang, L. Pan, B. Xu, H. Xu, Adv. Funct. Mater. 2018, 28, 1705551; d) Z. Han, P. Wang, Y. Lu, Z. Jia, S. Qu, W. Yang, Sci. Adv. 2022, 8, eabl5066.
- 27a) C. K. Lin, S. Y. Chen, M. H. Lien, J. Phys. Chem. 1995, 99, 1454;
b) M. Beniken, M. Driouch, M. Sfaira, B. Hammouti, M. E. Touhami, M. A. Mohsin, J. Bio- Tribo-Corros. 2018, 4, 38;
10.1007/s40735-018-0155-y Google Scholarc) Q. Ma, P. J. Shuler, C. W. Aften, Y. Tang, Polym. Degrad. Stab. 2015, 121, 69.
- 28a) X. Jin, H. Jiang, G. Li, B. Fu, X. Bao, Z. Wang, Q. Hu, Chem. Eng. J. 2020, 394, 124901; b) D.-H. Kim, Z. A. Akbar, Y. T. Malik, J.-W. Jeon, S.-Y. Jang, Nat. Commun. 2023, 14, 3246.
- 29a) S. Kim, J. W. Kim, Y. H. Lee, Y. R. Jeong, K. Keum, D. S. Kim, H. Lee, J. S. Ha, Chem. Eng. J. 2023, 464, 142700; b) J. Kang, D. Son, G.-J. N. Wang, Y. Liu, J. Lopez, Y. Kim, J. Y. Oh, T. Katsumata, J. Mun, Y. Lee, L. Jin, J. B.-H. Tok, Z. Bao, Adv. Mater. 2018, 30, 1706846; c) Y. Yang, M. W. Urban, Adv. Mater. Interfaces 2018, 5, 1800384.
- 30H. Zhang, N. Tang, X. Yu, M. H. Li, J. Hu, Adv. Funct. Mater. 2022, 32, 2206305.
- 31Y. Liu, X. Zhang, B. Li, H. Chen, H. Li, J. Chen, H. Dong, Chem. Eng. J. 2023, 461, 141965.
- 32K. Xue, C. Shao, J. Yu, H. Zhang, B. Wang, W. Ren, Y. Cheng, Z. Jin, F. Zhang, Z. Wang, R. Sun, Adv. Funct. Mater. 2023, 33, 2305879.
- 33a) Y. Wu, X.-F. Zhang, M. Li, M. Yu, J. Yao, Langmuir 2024, 40, 5288; b) Y. Wang, S. Fu, L. A. Lucia, H. Zhang, Compos. Sci. Technol. 2022, 229, 109696.
- 34a) A. Gómez-Siurana, A. Marcilla, M. Beltrán, D. Berenguer, I. Martínez-Castellanos, S. Menargues, Thermochim. Acta 2013, 573, 146; b) X. Zhang, M. Han, L. Xu, A. M. AlSofi, Chem. Phys. Lett. 2022, 795, 139538; c) M. Hina, S. Bashir, K. Kamran, S. Ramesh, K. Ramesh, Polymer 2020, 210, 123020; d) Y. H. Gad, R. O. Aly, S. E. Abdel-Aal, J. Appl. Polym. Sci. 2011, 120, 1899.
- 35D. Du, J. Zhou, D. Shi, W. Dong, M. Chen, ACS Appl. Polym. Mater. 2022, 4, 4972.
- 36G. Jung, H. Lee, H. Park, J. Kim, J. Wook Kim, D. Sik Kim, K. Keum, Y. Hui Lee, J. Sook Ha, Chem. Eng. J. 2022, 450, 138379.
- 37H. Wang, R. Shang, J. Chen, X. Jin, K. Chen, B. Huang, H. Chen, Q.-L. Lu, Nano Energy 2024, 128, 109843.
- 38a) H. Guo, Y. Han, W. Zhao, J. Yang, L. Zhang, Nat. Commun. 2020, 11, 2037; b) E. Yilgör, E. Burgaz, E. Yurtsever, İ. Yilgör, Polymer 2000, 41, 849.
- 39X. Wan, T. Mu, G. Yin, Nano-Micro Lett. 2023, 15, 99.
- 40A. Lerbret, F. Affouard, J. Phys. Chem. B 2017, 121, 9437.
- 41a) D. Vinciguerra, M. B. Gelb, H. D. Maynard, JACS Au 2022, 2, 1561; b) M. Burek, Z. P. Czuba, S. Waskiewicz, Polymer 2014, 55, 6460; c) M. Burek, M. Kowalczyk, Z. P. Czuba, W. Krol, R. Pilawka, S. Waskiewicz, Polym. Degrad. Stab. 2016, 129, 296.
- 42a) Y. Zhou, L. Li, Z. Han, Q. Li, J. He, Q. Wang, Chem. Rev. 2023, 123, 558; b) S. Wang, M. W. Urban, Nat. Rev. Mater. 2020, 5, 562; c) J. Ekeocha, C. Ellingford, M. Pan, A. M. Wemyss, C. Bowen, C. Wan, Adv. Mater. 2021, 33, 2008052.
- 43a) J. Wu, Z. Wu, Y. Wei, H. Ding, W. Huang, X. Gui, W. Shi, Y. Shen, K. Tao, X. Xie, ACS Appl. Mater. Interfaces 2020, 12, 19069; b) J. Tie, Z. Mao, L. Zhang, Y. Zhong, X. Sui, H. Xu, Polym. Chem. 2022, 13, 4064.
- 44a) Y. Huang, W. Zhu, J. Zhou, Y. Yu, Q. Zhang, S. Hu, Y. Deng, IEEE Sens. J. 2023, 23, 19409; b) P. Lugoda, J. C. Costa, C. Oliveira, L. A. Garcia-Garcia, S. D. Wickramasinghe, A. Pouryazdan, D. Roggen, T. Dias, N. Münzenrieder, Sensors 2020, 20, 73; c) S. S. Phadkule, S. Sarma, Polym. Compos. 2023, 44, 1381.
- 45a) L. Yang, Z. Wang, H. Wang, B. Jin, C. Meng, X. Chen, R. Li, H. Wang, M. Xin, Z. Zhao, S. Guo, J. Wu, H. Cheng, Adv. Mater. 2023, 35, 2207742; b) A. B. Nigusse, B. Malengier, D. A. Mengistie, G. B. Tseghai, L. Van Langenhove, Sensors 2020, 20, 6233.
- 46a) Z. Zhang, Y. Gao, Y. Gao, F. Jia, G. Gao, Chem. Eng. J. 2023, 452, 139014; b) Y. Wu, Y. Deng, K. Zhang, J. Qiu, J. Wu, L. Yan, ACS Appl. Energy Mater. 2022, 5, 3013; c) Y. Liang, D. Zou, Y. Zhang, Z. Zhong, Chem. Eng. J. 2023, 475, 145928.
- 47P. Yilmaz Erdogan, H. Zengin, A. Yavuz, Solid State Ionics 2020, 352, 115362.
- 48H. Lee, G. Jung, K. Keum, J. W. Kim, H. Jeong, Y. H. Lee, D. S. Kim, J. S. Ha, Adv. Funct. Mater. 2021, 31, 2106491.
- 49a) J.-l. Hong, J.-h. Liu, X. Xiong, S.-y. Qin, X.-y. Xu, X. Meng, K. Gu, J. Tang, D.-Z. Chen, Electrochem. Commun. 2023, 148, 107456; b) O. B. Okafor, A. P. I. Popoola, O. M. Popoola, U. O. Uyor, V. E. Ogbonna, Polym. Bull. 2024, 81, 189.
- 50F. Fan, J. Szpunar, Macromol. Mater. Eng. 2015, 300, 99.
- 51Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 2018, 359, 72.