Well-Defined Block Copolymer Vitrimer Membranes
Radosław Górecki
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorSaibal Bhaumik
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorEyad Qasem
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorLivia Loiola
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorAbdul-Hamid Emwas
Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorKonstantinos Ntetsikas
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Nikos Hadjichristidis
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Suzana P. Nunes
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
E-mail: [email protected]; [email protected]
Search for more papers by this authorRadosław Górecki
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorSaibal Bhaumik
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorEyad Qasem
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Research & Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
Search for more papers by this authorLivia Loiola
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorAbdul-Hamid Emwas
Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorKonstantinos Ntetsikas
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Search for more papers by this authorCorresponding Author
Nikos Hadjichristidis
Polymer Synthesis Laboratory, Chemistry Program, Physical Science and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Suzana P. Nunes
Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900 Saudi Arabia
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A well-defined α,ω-dialdehyde polyisoprene-b-polystyrene block copolymer, synthesized using anionic polymerization high-vacuum techniques, is employed to prepare vitrimers with tris(2-aminoethyl)amine as the cross-linking agent. The vitrimer network, featuring dynamic imine cross-links, results in robust, flexible, and solvent-resistant films, which are applicable in thin film composite membranes. These vitrimer membranes, with molecular weight cut-offs in the nanofiltration range, are successfully used for organic solvent separation and evaluated for gas separation. The cross-linking density, controlled by the cross-linker, affects the material's gas permeability and affinity for CO₂. The dynamic nature of the imine cross-links enables the vitrimer's self-healing ability, activated by heat treatment at temperatures as low as 50 °C. Additionally, the vitrimer membranes can be reprocessed through solvent dissolution in the presence of the excess cross-linking agent.
Conflict of Interest
The authors declare no conflict of Interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409139-sup-0001-SuppMat.docx3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Elhacham, L. Ben-Uri, J. Grozovski, Y. M. Bar-On, R. Milo, Nature 2020, 588, 442.
- 2W. Steffen, W. Broadgate, L. Deutsch, O. Gaffney, C. Ludwig, Anthrop. Rev. 2015, 2, 81.
- 3K. Pabortsava, R. S. Lampitt, Nat. Commun. 2020, 11, 4073.
- 4J. R. Jambeck, R. Geyer, C. Wolcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, K. L. Law, Science 2015, 347, 768.
- 5R. Mülhaupt, Macromol. Chem. Phys. 2012, 214, 159.
- 6L. Imbernon, S. Norvez, From Landfilling to Vitrimer Chemistry in Rubber Life Cycle, 82, Elsevier Ltd, Amsterdam 2016, pp. 347–376.
- 7D. Welsby, J. Price, S. Pye, P. Ekins, Nature 2021, 597, 230.
- 8M. Fang, C.-L. Chang, Res. Policy 2023, 81, 103365.
10.1016/j.resourpol.2023.103365 Google Scholar
- 9A. Rahimi, J. M. García, Nat. Rev. Chem. 2017, 1, 0046.
- 10E. A. Olivetti, J. M. Cullen, Science 2018, 360, 1396.
- 11D. K. Schneiderman, M. A. Hillmyer, Macromolecules 2017, 50, 3733.
- 12L. Yue, H. Guo, A. Kennedy, A. Patel, X. Gong, T. Ju, T. Gray, I. Manas-Zloczower, ACS Macro Lett. 2020, 9, 836.
- 13S. L. Aristizábal, R. Lively, S. P. Nunes, J. Membr. Sci. 2023, 685, 121972.
- 14R. P. Lively, D. S. Sholl, Nat. Mater. 2017, 16, 276.
- 15D. S. Sholl, R. P. Lively, Nature 2016, 532, 435.
- 16S. Chisca, V.-E. Musteata, W. Zhang, S. Vasylevskyi, G. Falca, E. Abou-Hamad, A.-H. Emwas, M. Altunkaya, S. P. Nunes, Science 2022, 376, 1105.
- 17A. Naderi, A. Asadi Tashvigh, T.-S. Chung, M. Weber, C. Maletzko, J. Membr. Sci. 2018, 563, 726.
- 18J. D. Wind, S. M. Sirard, D. R. Paul, P. F. Green, K. P. Johnston, W. J. Koros, Macromolecules 2003, 36, 6433.
- 19J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Industr., Engin. Chem. Res. 2002, 41, 6139.
- 20J. R. Werber, C. O. Osuji, M. Elimelech, Nat. Rev. Mater. 2016, 1, 16018.
- 21R. W. Baker, Membrane Technology and Applications, 3rd ed., John Wiley and Sons Ltd, Hoboken 2012.
10.1002/9781118359686 Google Scholar
- 22S. Karan, Z. Jiang, A. G. Livingston, Science 2015, 348, 1347.
- 23D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Science 2011, 334, 965.
- 24G. J. M. Formon, S. Storch, A. Y. G. Delplanque, B. Bresson, N. J. Van Zee, R. Nicolaÿ, Adv. Funct. Mater. 2023, 33, 2306065.
- 25P. Taynton, K. Yu, R. K. Shoemaker, Y. Jin, H. J. Qi, W. Zhang, Adv. Mater. 2014, 26, 3938.
- 26J. Liu, X. Liu, X. Cui, J. Qin, M. Shi, D. Wang, L. Liang, C. Yang, ACS Appl. Polym. Mater 2023, 5, 10042.
- 27K. Liang, G. Zhang, J. Zhao, L. Shi, J. Cheng, J. Zhang, ACS Sustain. Chem. Eng. 2021, 9, 5673.
- 28Y. Xu, K. Odelius, M. Hakkarainen, ACS Sustainable Chem. Eng. 2020, 8, 17272.
- 29R. L. Snyder, D. J. Fortman, G. X. De Hoe, M. A. Hillmyer, W. R. Dichtel, Macromolecules 2018, 51, 389.
- 30Y. X. Lu, Z. Guan, J. Am. Chem. Soc. 2012, 134, 14226.
- 31Y. X. Lu, F. Tournilhac, L. Leibler, Z. Guan, J. Am. Chem. Soc. 2012, 134, 8424.
- 32Z. Chen, Y. C. Sun, J. Wang, H. J. Qi, T. Wang, H. E. Naguib, ACS Appl. Mater. Interfaces 2020, 12, 8740.
- 33B. Zhang, C. Yuan, W. Zhang, M. L. Dunn, H. J. Qi, Z. Liu, K. Yu, Q. Ge, RSC Adv. 2019, 9, 5431.
- 34B. Krishnakumar, R. V. S. P. Sanka, W. H. Binder, V. Parthasarthy, S. Rana, N. Karak, Chem. Eng. J. 2020, 385, 123820.
- 35S. P. Nunes, Block Macromol. 2016, 49, 2905.
- 36N. Hampu, J. R. Werber, W. Y. Chan, E. C. Feinberg, M. A. Hillmyer, ACS Nano 2020, 14, 16446.
- 37Y. Zhang, J. L. Sargent, B. W. Boudouris, W. A. Phillip, J. Appl. Polym. Sci. 2015, 132, 41683.
- 38D. Ma, J. Zhou, Z. Wang, Y. Wang, J. Membr. Sci. 2020, 598, 117656.
- 39M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, B. D. Freeman, Macromolecules 2017, 50, 7809.
- 40H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530.
- 41F. H. Akhtar, H. Vovushua, L. F. Villalobos, R. Shevate, M. Kumar, S. P. Nunes, U. Schwingenschlögl, K.-V. Peinemann, J. Membr. Sci. 2019, 572, 641.
- 42J. J. Lessard, G. M. Scheutz, S. H. Sung, K. A. Lantz, T. H. Epps, B. S. Sumerlin, J. Am. Chem. Soc. 2020, 142, 283.
- 43H. Fang, X. Gao, F. Zhang, W. Zhou, G. Qi, K. Song, S. Cheng, Y. Ding, H. H. Winter, Macromolecules 2022, 55, 10900.
- 44C.-C. Wang, M.-J. Xie, R. Zhang, J. Cao, M.-Z. Tang, Y.-X. Xu, Polymer 2023, 273, 125854.
- 45K. Ntetsikas, V. Ladelta, S. Bhaumik, N. Hadjichristidis, ACS Polym. Au 2023, 3, 158.
- 46S. Bhaumik, K. Ntetsikas, N. Patelis, K. Peponaki, D. Vlassopoulos, N. Hadjichristidis, Macromolecules 2024, 57, 1751.
- 47Y. Ren, T. P. Lodge, M. A. Hillmyer, Macromolecules 2000, 33, 866.
- 48A. K. Khandpur, S. Ftirster, F. S. Bates, I. W. Hamley, A. J. Ryan, K. Almdal, K. Mortensen, Macromolecules 1995, 28, 8796.
- 49J. W. Goodwin, R. W. Hughes, Rheology for Chemists: An Introduction, 2nd ed., Royal Society of Chemistry, 2008.
- 50L. Cheng, S. Liu, W. Yu, Polymer 2021, 222, 123662.
- 51B. M. El-Zaatari, J. S. A. Ishibashi, J. A. Kalow, Polym. Chem. 2020, 11, 5339.
- 52A. Arbe, A. Alegria, J. Colmenero, S. Bhaumik, K. Ntetsikas, N. Hadjichristidis, ACS Macro Lett. 2023, 12, 1595.
- 53J. Zheng, Z. M. Png, S. H. Ng, G. X. Tham, E. Ye, S. S. Goh, X. J. Loh, Z. Li, Mater. Today 2021, 51, 586.
- 54Y. Spiesschaert, C. Taplan, L. Stricker, M. Guerre, J. M. Winne, F. E. Du Prez, Polym. Chem. 2020, 11, 5377.
- 55P. P. Angelopoulou, I. Moutsios, G.-M. Manesi, D. A. Ivanov, G. Sakellariou, A. Avgeropoulos, Prog. Polym. Sci. 2022, 135, 101625.
- 56C. Y. Chang, G. M. Manesi, C. Y. Yang, Y. C. Hung, K. C. Yang, P. T. Chiu, A. Avgeropoulos, R. M. Ho, Proc. Natl. Acad. Sci. USA 2021, 118, 2022275118.
- 57S. Bhaumik, K. Ntetsikas, N. Hadjichristidis, Macromolecules 2020, 53, 6682.
- 58J. Liu, P. Lin, S. Cheng, W. Wang, J. W. Mays, S. Q. Wang, ACS Macro Lett. 2015, 4, 1072.
- 59A. M. Hubbard, Y. Ren, D. Konkolewicz, A. Sarvestani, C. R. Picu, G. S. Kedziora, A. Roy, V. Varshney, D. Nepal, ACS Appl. Polym. Mater 2021, 3, 1756.
- 60W. Denissen, G. Rivero, R. Nicolaÿ, L. Leibler, J. M. Winne, F. E. Du Prez, Adv. Funct. Mater. 2015, 25, 2451.
- 61J. Campbell, G. Székely, R. P. Davies, D. C. Braddock, A. G. Livingston, J. Mater. Chem. A 2014, 2, 9260.
- 62C. Echaide-Górriz, S. Sorribas, C. Téllez, J. Coronas, RSC Adv. 2016, 6, 90417.
- 63X. Cheng, X. Jiang, Y. Zhang, C. H. Lau, Z. Xie, D. Ng, S. J. D. Smith, M. R. Hill, L. Shao, ACS Appl. Mater., Interfaces 2017, 9, 38877.
- 64L. Ahmadian-Alam, H. Mahdavi, Microporous Mesoporous Mater. 2021, 328, 111443.
- 65B. Liang, H. Wang, X. Shi, B. Shen, X. He, Z. A. Ghazi, N. A. Khan, H. Sin, A. M. Khattak, L. Li, Z. Tang, Nat. Chem. 2018, 10, 961.
- 66S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van Der Bruggen, Chem. Soc. Rev. 2019, 48, 2665.
- 67R. Hardian, K. A. Miller, L. Cseri, S. Roy, J. M. Gayle, R. Vajtai, P. M. Ajayan, G. Szekely, Chem. Eng. J. 2023, 452, 139457.
- 68S. Li, C. Li, X. Song, B. Su, B. Mandal, B. Prasad, X. Gao, C. Gao, ACS Appl. Mater., Interfaces 2019, 11, 6527.
- 69S. Li, C. Li, B. Su, M. Z. Hu, X. Gao, C. Gao, J. Membr. Sci. 2019, 588, 117212.
- 70G. M. Shi, Y. Feng, B. Li, H. M. Tham, J.-Y. Lai, T.-S. Chung, Prog. Polym. Sci. 2021, 123, 101470.
- 71Y. Li, Z. Guo, S. Li, B. Van Der Bruggen, Adv. Mater. Interfaces 2021, 8, 2001671.
- 72N. Zhang, X. Song, H. Jiang, C. Y. Tang, Sep. Purif. Technol. 2021, 269, 118719.
- 73A. Heidari, H. Mahdavi, Chem. Rec. 2023, 23, 202300189.
10.1002/tcr.202300189 Google Scholar
- 74M. Du, L. Chen, H. Yang, X. Zeng, Y. Tan, L. Dong, C. Zhou, ChemNanoMat 2023, 9, 202300397.
10.1002/cnma.202300397 Google Scholar
- 75K. Hui, Y. Wang, D. Hua, S. Japip, T.-S. Chung, J. Membr. Sci. 2017, 542, 289.
10.1016/j.memsci.2017.08.024 Google Scholar
- 76H. M. Tham, T.-S. Chung, J. Membr. Sci. 2020, 610, 118294.
- 77Y. Zhang, L. Wang, L. Li, H. Wang, X. Dong, Y. Pan, T. Wang, J. Membr. Sci. 2023, 679, 121694.
- 78S. Hermans, E. Dom, H. Mariën, G. Koeckelberghs, I. F. J. Vankelecom, J. Membr. Sci. 2015, 476, 356.
- 79Y. C. Xu, Z. X. Wang, X. Q. Cheng, Y. C. Xiao, L. Shao, Chem. Eng. J. 2016, 303, 555.
- 80J. Aburabie, K.-V. Peinemann, J. Membr. Sci. 2017, 523, 264.
- 81T. Huang, B. A. Moosa, P. Hoang, J. Liu, S. Chisca, G. Zhang, M. Alyami, N. M. Khashab, S. P. Nunes, Nat. Commun. 2020, 11, 5882.
- 82J. Li, M. Zhang, W. Feng, L. Zhu, L. Zhang, J. Membr. Sci. 2020, 601, 117951.
- 83A. Waheed, U. Baig, I. H. Aljundi, Coll. Interface Sci. Commun. 2021, 45, 100530.
- 84Y. Jin, Q. Song, N. Xie, W. Zheng, J. Wang, J. Zhu, Y. Zhang, J. Membr. Sci. 2021, 632, 119375.
- 85Z. Zha, P. He, S. Zhao, R. Guo, Z. Wang, J. Wang, J. Membr. Sci. 2022, 647, 120306.
- 86A. Waheed, U. Baig, I. H. Aljundi, Sci. Rep. 2023, 13, 11691.
- 87B. Alhazmi, G. Ignacz, M. Di Vincenzo, M. N. Hedhili, G. Szekely, S. P. Nunes, Nat. Commun. 2024, 15, 7151.
- 88S. Kumar, N. Alqadhi, J. Hu, G. Szekely, J. Membr. Sci. 2024, 691, 122257.
- 89L. Shao, X. Cheng, Z. Wang, J. Ma, Z. Guo, J. Membr. Sci. 2014, 452, 82.
- 90Y. Li, H. Mao, H. Zhang, G. Yang, R. Ding, J. Wang, Sep. Purif. Technol. 2016, 165, 60.
- 91H. Abadikhah, E. N. Kalali, S. Behzadi, S. A. Khan, X. Xu, M. E. Shabestari, S. Agathopoulos, Chem. Eng. Sci. 2019, 204, 99.
- 92D. Peshev, L. G. Peeva, G. Peev, I. I. R. Baptista, A. T. Boam, Chem. Eng. Res. Des. 2011, 89, 318.
- 93H. Mariën, I. F. J. Vankelecom, J. Membr. Sci. 2017, 541, 205.
- 94C. Ong, G. Falca, T. Huang, J. Liu, P. Manchanda, S. Chisca, S. P. Nunes, ACS Sustain. Chem., Engin. 2020, 8, 11541.
- 95S. Li, R. Dong, V.-E. Musteata, J. Kim, N. D. Rangnekar, J. R. Johnson, B. D. Marshall, S. Chisca, J. Xu, S. Hoy, B. A. McCool, S. P. Nunes, Z. Jiang, A. G. Livingston, Science 2022, 377, 1555.
- 96Y. Liu, Z. Liu, G. Liu, W. Qiu, N. Bhuwania, D. Chinn, W. J. Koros, J. Membr. Sci. 2020, 593, 117430.
- 97A. Rahimalimamaghani, R. Ramezani, D. A. P. Tanaka, F. Gallucci, Ind. Eng. Chem. Res. 2023, 62, 19116.
- 98A. C. Puleo, N. Muruganandam, D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 2385.
- 99P. Tremblay, M. Savard, J. Vermette, R. Paquin, J. Membr. Sci. 2006, 282, 245.
- 100W. F. Yong, H. Zhang, Prog. Mater. Sci. 2021, 116, 100713.
- 101T. M. Murphy, B. D. Freeman, D. R. Paul, Polymer 2013, 54, 873.
- 102T. Dobre, O. C. Pârvulescu, J. Sanchez-Marcano, A. Stoica, M. Stroescu, G. Iavorschi, Sep. Purif. Technol. 2011, 82, 202.
- 103M. Minelli, M. Giacinti Baschetti, D. T. Hallinan, N. P. Balsara, J. Membr. Sci. 2013, 432, 83.