Investigating the Effect of Carbon Nanotubes Decorated SmVO4-MoS2 Nanocomposite for Energy Storage Enhancement via VARTM-Fabricated Solid-State Structural Supercapacitors Using Woven Carbon Fiber
Mohd Shoeb
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorFouzia Mashkoor
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorHongjun Jeong
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorMohammad Naved Khan
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorCorresponding Author
Changyoon Jeong
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorMohd Shoeb
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorFouzia Mashkoor
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorHongjun Jeong
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorMohammad Naved Khan
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
Search for more papers by this authorCorresponding Author
Changyoon Jeong
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Traditional supercapacitors are cumbersome and need separate enclosures, which add weight and reduce space efficiency. In contrast, structural supercapacitors combine energy storage with load-bearing materials, optimizing space and weight for automotive and aerospace applications. This study investigates the synthesis of SmVO4-MoS2 and SmVO4-MoS2-CNT nanocomposites, focusing on optimizing CNT concentration in SmVO4-MoS2-CNT for high-performance supercapacitors. The optimal concentration of SmVO4-MoS2-CNT is identified and used to fabricate structural supercapacitor devices via the vacuum-assisted resin transfer molding (VARTM) technique. The results indicate that the specific capacitance of Sm-Mo-C5, using a three-electrode system, reached 1.01 F cm−2 at a current density of 2.187 mA cm−2. The performance improvement is attributed to the synergistic interaction among SmVO4, MoS2, and CNTs, collectively enhancing conductivity and active site availability. The practical application of this study is demonstrated by synthesizing Sm-Mo-C5 on woven carbon fiber (WCF) and subsequently fabricating a structural supercapacitor device (SSD) using the VARTM. The SSD, produced via VARTM, exhibited a specific capacitance of 0.287 F cm−2 at a current density of 2 A cm−2. The device showcased exceptional cyclic stability, maintaining 72.5% of its initial capacitance after 50,000 charge-discharge cycles. Additionally, it achieved a maximum energy density of 79.86 Wh kg−1 at a power density of 1017.69 W kg−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408283-sup-0001-SuppMat.docx7.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Shoeb, F. Mashkoor, H. Jeong, A. H. Anwer, S. Zhu, M. Z. Ansari, C. Jeong, Chem. Eng. J. 2023, 466, 143116.
- 2F. Mashkoor, M. Shoeb, H. Jeong, M. N. Khan, C. Jeong, J. Energy Chem. 2024, 97, 498.
- 3Y. Zhang, X. Jing, X.-h. Yan, H.-l. Gao, K.-z. Gao, Y. Cao, S. Hu, Y.-y. Zhang, Coord. Chem. Rev. 2024, 499, 215494.
- 4Y. Zhang, Y.-y. Zhang, C.-e. Li, X.-h. Yan, S. Hu, R.-b. Yin, Y.-f. Wei, K.-z. Gao, H.-l. Gao, Coord. Chem. Rev. 2024, 519, 216103.
- 5P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
- 6M. Shoeb, F. Mashkoor, M. Naved Khan, B.-J. Kim, C. Jeong, Sep. Purif. Technol. 2025, 354, 128656.
- 7M. Shoeb, F. Mashkoor, J. A. Khan, M. N. Khan, M. A. Gondal, C. Jeong, J. Energy Storage 2024, 97, 112654.
10.1016/j.est.2024.112654 Google Scholar
- 8B. K. Deka, A. Hazarika, G.-H. Kang, Y. J. Hwang, A. P. Jaiswal, D. Chan Kim, Y.-B. Park, H. W. Park, ACS Energy Lett. 2023, 8, 963.
- 9B. K. Deka, A. Hazarika, M.-J. Kwak, D. C. Kim, A. P. Jaiswal, H. G. Lee, J. Seo, C. Jeong, J.-H. Jang, Y.-B. Park, H. W. Park, Energy Storage Mater. 2021, 43, 402.
- 10B. K. Deka, A. Hazarika, S. Lee, D. Y. Kim, Y.-B. Park, H. W. Park, Nano Energy 2020, 73, 104754.
- 11D. O'Brien, D. Baechle, E. Wetzel, J. Compos. Mater. 2011, 45, 2797.
- 12T. Carlson, D. Ordéus, M. Wysocki, L. E. Asp, Compos. Sci. Technol. 2010, 70, 1135.
- 13B. K. Deka, A. Hazarika, M.-J. Kwak, D. C. Kim, A. P. Jaiswal, H. G. Lee, J. Seo, C. Jeong, J.-H. Jang, Y.-B. Park, Energy Storage Mater. 2021, 43, 402.
- 14A. Amasegowda, K. Alkanad, N. Al-Zaqri, A. Al-khawlani, A. H. U. Kumar, B. M. Al-Maswari, N. K. Lokanath, J. Environ. Chem. Eng. 2024, 12, 111841.
- 15Y. Wang, J. Huang, Y. Chen, H. Yang, K.-H. Ye, Y. Huang, J. Colloid Interface Sci. 2024, 672, 12.
- 16Y. Chen, X. Li, H. Yang, Y. Huang, Small 2024, 20, 2402406.
- 17J. N. Baby, B. Sriram, S.-F. Wang, M. George, J. Hazard. Mater. 2021, 408, 124940.
- 18Y. Sun, W. Zheng, Dalton Trans. 2010, 39, 7098.
- 19V. Ameri, S. Khademolhoseini, J. Mater. Sci.: Mater. Electron. 2017, 28, 2887.
- 20M. Yan, Y. Yan, Y. Wu, W. Shi, Y. Hua, RSC Adv. 2015, 5, 90255.
- 21S. V. Venkatesan, A. Nandy, K. Karan, S. R. Larter, V. Thangadurai, Electrochem. Energy Rev. 2022, 5, 16.
- 22T. Liu, G. Melinte, O. Dolotko, M. Knapp, B. Mendoza-Sánchez, J. Energy Chem. 2023, 78, 56.
- 23C. Zhang, F. Han, F. Wang, Q. Liu, D. Zhou, F. Zhang, S. Xu, C. Fan, X. Li, J. Liu, Energy Storage Mater. 2020, 24, 208.
- 24X. Yin, W. Zheng, H. Tang, P. Zhang, Z. Sun, Nanoscale 2023, 15, 10437.
- 25X. Chen, J. Ding, J. Jiang, G. Zhuang, Z. Zhang, P. Yang, RSC Adv. 2018, 8, 29488.
- 26N. Arya, Y. Chandran, B. Luhar, P. Kajal, S. Powar, V. Balakrishnan, ACS Appl. Mater. Interfaces 2023, 15, 34818.
- 27H. Chang, L. Zhang, S. Lyu, S. Wang, ACS Omega 2022, 7, 14390.
- 28P. Tiwari, D. Janas, R. Chandra, Carbon 2021, 177, 291.
- 29S. Hasan, A. H. Reaz, S. Das, C. K. Roy, M. A. Basith, J. Mater. Chem. C 2022, 10, 7980.
- 30T. Sun, X. Liu, Z. Li, L. Ma, J. Wang, S. Yang, New J. Chem. 2017, 41, 7142.
- 31D. Govindarajan, F. J. Johanson, V. U. Shankar, M. J. Salethraj, Mater. Technol. 2022, 37, 1788.
10.1080/10667857.2021.1985750 Google Scholar
- 32Z. Khan, S. Bhattu, S. Haram, D. Khushalani, RSC Adv. 2014, 4, 17378.
- 33Y. Arora, A. P. Shah, S. Battu, C. B. Maliakkal, S. Haram, A. Bhattacharya, D. Khushalani, Sci. Rep. 2016, 6, 36294.
- 34D. Govindarajan, F. J. Johanson, V. Uma Shankar, M. J. Salethraj, R. Gopalakrishnan, J. Mater. Sci.: Mater. Electron. 2021, 32, 19434.
- 35V. U. Shankar, Y. Mona, P. Suganya, P. S. Kumar, D. Govindarajan, V. M. Gowri, E. Narayanamoorthi, P.-C. Tsai, Y.-C. Lin, V. K. Ponnusamy, Process Saf. Environ. Prot. 2024, 188, 1211.
10.1016/j.psep.2024.06.017 Google Scholar
- 36B. Muthukumar, A. Surulinathan, H. Gubendran, S. Velmurugan, B. Sambandam, S. Ganapathy, A. Ayyaswamy, J. Energy Storage 2023, 74, 109331.
- 37A. R. Z. Almotairy, B. M. Al-Maswari, K. Alkanad, N. K. Lokanath, R. T. Radhika, B. M. Venkatesha, Heliyon 2023, 9, e18496.
- 38A. S. Renani, M. M. Momeni, H. M. Aydisheh, B.-K. Lee, J. Energy Storage 2023, 62, 106866.
- 39M. Babu, S. Arunpandiyan, G. Hariharan, V. Shanmugapriya, S. Bharathi, A. Arivarasan, J. Alloys Compd. 2023, 945, 169225.
- 40V. T. Nguyen, F. N. I. Sari, J.-M. Ting, RSC Adv. 2022, 12, 29170.
- 41Y. Yan, H. Xu, W. Guo, Q. Huang, M. Zheng, H. Pang, H. Xue, Inorg. Chem. Front. 2016, 3, 791.
- 42P. H. Jampani, O. Velikokhatnyi, K. Kadakia, D. H. Hong, S. S. Damle, J. A. Poston, A. Manivannan, P. N. Kumta, J. Mater. Chem. A 2015, 3, 8413.
- 43B. Suganya, S. Maruthamuthu, J. Chandrasekaran, B. Saravanakumar, E. Vijayakumar, R. Marnadu, A. M. Al-Enizi, M. Ubaidullah, J. Electroanal. Chem. 2021, 881, 114936.
- 44A. Pullanchiyodan, G. T. Haridasan, P. Sreeram, A. Das, N. T. M. Balakrishnan, P. Raghavan, A. C. Hegde, Energy Fuels 2024, 38, 3445.
- 45G. Li, T. Ouyang, T. Xiong, Z. Jiang, D. Adekoya, Y. Wu, Y. Huang, M. S. Balogun, Carbon 2021, 174, 1.
- 46H. Yang, T. Xiong, Z. Zhu, R. Xiao, X. Yao, Y. Huang, M. S. Balogun, Carbon Energy 2022, 4, 820.
- 47Y. Zhang, S.-c. Xue, X.-h. Yan, H.-L. Gao, K.-z. Gao, Electrochim. Acta 2023, 442, 141822.
- 48A. H. Anwer, M. M. Zubair, F. Mashkoor, A. Benamor, I. Hasan, M. Shoeb, C. Jeong, J. Alloys Compd. 2024, 970, 172512.
- 49A. H. Anwer, M. Z. Ansari, F. Mashkoor, S. Zhu, M. Shoeb, C. Jeong, J. Alloys Compd. 2023, 955, 170038.
- 50A. S. Vijayan, A. Joseph, B. G. Nair, S. Vandana, ACS Appl. Nano Mater. 2024, 7, 19024.
- 51A. S. Alkorbi, K. Y. Kumar, M. K. Prashanth, L. Parashuram, A. Abate, F. A. Alharti, B.-H. Jeon, M. S. Raghu, Int. J. Hydrogen Energy 2022, 47, 12988.
- 52Z. Mou, T. Meng, J. Li, Y. Wang, X. Wang, H. Guo, W. Meng, K. Zhang, Int. J. Hydrogen Energy 2024, 51, 748.
- 53X. Ren, Q. Wei, F. Wu, Y. Wang, L. Zhao, Chem. Commun. 2021, 57, 2531.
- 54N. N. Patel, A. B. Garg, S. Meenakshi, K. K. Pandey, B. N. Wani, S. M. Sharma, AIP Conf. Proc. 2010, 1313, 281.
- 55D. Errandonea, S. N. Achary, J. Pellicer-Porres, A. K. Tyagi, Inorg. Chem. 2013, 52, 5464.
- 56T. Li, Y. He, J. Cai, H. Lin, M. Luo, L. Zhao, Photochem. Photobiol. 2013, 89, 529.
- 57K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, A. Babiński, Solid State Commun. 2014, 197, 53.
- 58K.-G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu, C. Casiraghi, ACS Nano 2014, 8, 9914.
- 59L. Dong, Y. He, H. Lin, S. Wang, W. Hu, M. Luo, L. Zhao, Mater. Lett. 2014, 122, 17.
- 60P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A. K. Saini, P. Singh, J. Clean. Prod. 2018, 203, 386.
- 61P. S. Chen, Y. Hu, S.-Y. Li, M. Mazurkiewicz-Pawlicka, A. Małolepszy, Int. J. Electrochem. Sci. 2024, 19, 100523.
- 62T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal., B 2013, 129, 255.
- 63N. P. Kondekar, M. G. Boebinger, E. V. Woods, M. T. McDowell, ACS Appl. Mater. Interfaces 2017, 9, 32394.
- 64C. Archana, S. Harish, R. Abinaya, J. Archana, M. Navaneethan, Sens. Actuators, A 2022, 348, 113938.
- 65S. Wei, Y. Fu, M. Liu, H. Yue, S. Park, Y. H. Lee, H. Li, F. Yao, npj 2D Mater. Appl. 2022, 6, 25.
- 66A. Kumar, H. K. Rathore, D. Sarkar, A. Shukla, Electrochem. Sci. Adv. 2022, 2, 2100187.
- 67A. H. Anwer, M. Shoeb, F. Mashkoor, A. Ali, S. Kareem, M. Z. Ansari, J. M. Park, C. Jeong, Appl. Catal., B 2023, 339, 123091.
- 68N. Flores-Diaz, F. De Rossi, A. Das, M. Deepa, F. Brunetti, M. Freitag, Chem. Rev. 2023, 123, 9327.
- 69K. Komatsubara, H. Suzuki, H. Inoue, M. Kishibuchi, S. Takahashi, T. Marui, S. Umezawa, T. Nakagawa, K. Nasu, M. Maetani, Y. Tanaka, M. Yamada, T. Nishikawa, Y. Yamashita, M. Hada, Y. Hayashi, ACS Appl. Nano Mater. 2022, 5, 1521.
- 70K. Kaneko, M. Li, S. Noda, Carbon Trends 2023, 10, 100245.
- 71X. Lu, G. J. Lian, J. Parker, R. Ge, M. K. Sadan, R. M. Smith, D. Cumming, J. Power Sources 2024, 592, 233916.
- 72S. Pervez, M. Z. Iqbal, Small 2023, 19, 2305059.
- 73S. Trasatti, G. Buzzanca, J. Electroanal. Chem. 1971, 29, A1.
- 74J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 75A. Cymann-Sachajdak, M. Graczyk-Zajac, G. Trykowski, M. Wilamowska-Zawłocka, Electrochim. Acta 2021, 383, 138356.
- 76S. Radhakrishnan, K. A. Sree Raj, S. R. Kumar, P. Johari, C. S. Rout, Nanotechnology 2021, 32, 155403.
- 77B. Cheng, R. Cheng, F. Tan, X. Liu, J. Huo, G. Yue, Nanoscale Res. Lett. 2019, 14, 66.
- 78P. Sun, R. Wang, Q. Wang, H. Wang, X. Wang, Appl. Surf. Sci. 2019, 475, 793.
- 79G. Sun, H. Ren, Z. Shi, L. Zhang, Z. Wang, K. Zhan, Y. Yan, J. Yang, B. Zhao, J. Colloid Interface Sci. 2021, 588, 847.
- 80B. Pandit, D. P. Dubal, P. Gómez-Romero, B. B. Kale, B. R. Sankapal, Sci. Rep. 2017, 7, 43430.
- 81H. Gupta, S. Mothkuri, R. McGlynn, D. Carolan, P. Maguire, D. Mariotti, P. K. Jain, T. N. Rao, G. Padmanabham, S. Chakrabarti, Phys. Status Solidi A 2020, 217, 1900855.
- 82R. Palanisamy, D. Karuppiah, S. Venkatesan, S. Mani, M. Kuppusamy, S. Marimuthu, A. Karuppanan, R. Govindaraju, S. Marimuthu, S. Rengapillai, M. Abdollahifar, A. K. Anbalagan, R. Perumalsamy, Colloid Interface Sci. Commun. 2022, 46, 100573.
- 83X. Yang, L. Zhao, J. Lian, J. Power Sources 2017, 343, 373.
- 84B. Liu, Y. Liu, H. Chen, M. Yang, H. Li, ACS Sustainable Chem. Eng. 2019, 7, 3101.
- 85X. Feng, Y. Huang, C. Li, Y. Xiao, X. Chen, X. Gao, C. Chen, Electrochim. Acta 2019, 308, 142.
- 86H.-C. Chen, Y.-C. Lin, Y.-L. Chen, C.-J. Chen, ACS Appl. Energy Mater. 2019, 2, 459.
- 87V. Shrivastav, Mansi, P. Dubey, V. Shrivastav, A. Kaur, M. Hołdyński, A. Krawczyńska, U. K. Tiwari, A. Deep, W. Nogala, S. Sundriyal, Sci. Rep. 2023, 13, 20675.
- 88C. S. Bongu, M. R. Krishnan, A. Soliman, M. Arsalan, E. H. Alsharaeh, ACS Omega 2023, 8, 36789.
- 89L. Deng, J. Liu, Z. Ma, G. Fan, Z. H. Liu, RSC Adv. 2018, 8, 24796.