Ni Vacancy and the Se/S Ratio Regulate the p-Band Center of Hollow NiSxSe2-x/Phase Junction CdS to Achieve High Efficiency and Broad-Spectrum Photocatalytic Performance
Corresponding Author
Ning Li
Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYanping Qiu
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorLinping Li
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorJiatong Zhang
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorYangqin Gao
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorCorresponding Author
Lei Ge
Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ning Li
Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYanping Qiu
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorLinping Li
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorJiatong Zhang
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorYangqin Gao
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Search for more papers by this authorCorresponding Author
Lei Ge
Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
Department of Materials Science and Engineering, College of New Energy and Material, China University of Petroleum Beijing, No. 18 Fuxue RD, Beijing, 102249 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Rational design of defect engineering and interfacial built-in electric fields of photocatalysts is imperative for renewable energy conversion. Herein, a multi-strategy involving the introduction of Ni vacancies, the adjustment of the Se/S ratio, and the construction of dual junctions are employed to simultaneously realize NiSxSe2-x/phase junction CdS (HCC) an excellent photocatalytic activity and broad light absorption. With the help of VNi and the regulation of S/Se, the local electrons are redistributed to occupy more antibonding orbitals and adjust the p-band center, thus optimizing the H* adsorption energy of the catalyst to accelerate the photocatalytic reaction kinetics. Meanwhile, the synergistic effects of phase junction and heterojunction formations generate dual built-in electric fields (BIEF), which further amplify the stepwise separation and migration of photogenerated carriers. Notably, VNi-NiSSe/HCC achieves an optimal H2 evolution rate of 11.43 mmol·g−1·h−1 under visible light irradiation with the apparent quantum yield (AQY) at 15.3% at 420 nm, which is 53 times and 26.6 times higher than H-CdS and HCC, respectively. Additionally, it also exhibits a hydrogen evolution rate of 147 µmol·g−1·h−1 under near-infrared (NIR) light with λ ≥780 nm. This work provides new insight into designing robust photocatalysts by regulating the electronic states and energy states.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408057-sup-0001-SuppMat.docx11 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. A. Turner, Science. 2004, 305, 972.
- 2Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, Z. Huang, X. Ruan, L. Zhai, L. Li, Z. Li, X. Wang, G.-H. Nam, J. Liu, Q. He, Z. Guan, J. Wang, C.-S. Lee, A. R. J. Kucernak, H. Zhang, Nature. 2023, 621, 300.
- 3M. Fu, G. Fan, D. Ding, Y. Liu, J. Yan, C. Wang, G. Song, B. Chai, Int. J. Hydrogen Energy. 2022, 47, 34397.
- 4L. Lystrom, P. Tamukong, D. Mihaylov, S. Kilina, J. Phys. Chem. Lett. 2020, 11, 4269.
- 5Y. Wu, H. Wang, W. Tu, S. Wu, J. W. Chew, Appl. Organomet. Chem. 2019, 33, e4780.
- 6K. Li, M. Han, R. Chen, S. Li, S. Xie, C. Mao, X. Bu, X. Cao, L. Dong, P. Feng, Y. Lan, Adv. Mater. 2016, 28, 8906.
- 7Z. Ai, G. Zhao, Y. Zhong, Y. Shao, B. Huang, Y. Wu, X. Hao, Appl. Catal., B. 2018, 221, 179.
- 8N. Li, Y. Qiu, L. Li, J. Zhang, S. Xu, Y. Gao, L. Ge, Sep. Purif. Technol. 2025, 353, 128305.
- 9S. Li, L. Wang, S. Liu, B. Xu, N. Xiao, Y. Gao, W. Song, L. Ge, J. Liu, ACS Sustainable Chem. Eng. 2018, 6, 9940.
- 10J. Li, J. Chen, Y. Ao, X. Gao, H. Che, P. Wang, Sep. Purif. Technol. 2022, 281, 119863.
- 11Y.-N. Wu, J.-Z. Wang, Q.-Z. Huang, J. Environ. Chem. Eng. 2024, 12, 112611.
- 12K. Li, H. Pan, F. Wang, Z. Zhang, S. Min, Appl. Catal., B. 2023, 321, 122028.
- 13X. Zhang, F. Wu, G. Li, L. Wang, J. Huang, A. Meng, Z. Li, Appl. Catal., B. 2024, 342, 123398.
- 14Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem., Int. Ed. 2018, 57, 5076.
- 15Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang, Z. Pei, H. Wang, Y. Liu, Y. Wang, S. Li, X. Liao, W. Yan, S. Zhao, Adv. Mater. 2022, 34, 2106541.
- 16M.d. H. Rahman, J. Yang, Y. Sun, A. Mannodi-Kanakkithodi, Surf. Interfaces. 2023, 39, 102960.
- 17W. Tang, L. Cheng, L. Zhang, X. Xue, D. Zhou, B. Li, G. Wang, Y. Zeng, X. Xing, X. Zhang, W. Dong, C. Hou, J. Colloid Interface Sci. 2023, 629, 1015.
- 18Y. Li, Q. Zhao, S. Liu, G. Ma, Y. Liu, R. Liu, H. Mu, X. Li, F. Li, Chem. Eng. J. 2022, 446, 137399.
- 19K. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu, Z. Wu, B. Weng, H. Hou, X. Ji, Adv. Funct. Mater. 2022, 32, 2201944.
- 20S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, J. Fan, L. Zhang, W. Zheng, X. Cui, J. Colloid Interface Sci. 2024, 671, 46.
- 21Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 2020, 32, 2000231.
- 22M. Xu, X. Ruan, D. Meng, G. Fang, D. Jiao, S. Zhao, Z. Liu, Z. Jiang, K. Ba, T. Xie, W. Zhang, J. Leng, S. Jin, S. K. Ravi, X. Cui, Adv. Funct. Mater. 2024, 34, 2402330.
- 23Y. Li, X. Liu, Y. Wang, Y. Liu, R. Liu, H. Mu, Y. Hao, X. Wang, F. Li, Green Energy Environ. 2024, 9, 1847.
- 24D. Gao, P. Deng, J. Zhang, L. Zhang, X. Wang, H. Yu, J. Yu, Angew. Chem., Int. Ed. 2023, 62, 202304559.
- 25M. Zhang, S. Nie, T. Cheng, Y. Feng, C. Zhang, L. Zheng, L. Wu, W. Hao, Y. Ding, Nano Energy. 2021, 90, 106635.
- 26Y. Xiang, Q. Li, X. Wei, X. Li, Q. Zheng, Y. Huo, D. Lin, J. Colloid Interface Sci. 2022, 607, 752.
- 27J. Lin, H. Yang, J. Zhang, S. Yang, G. Lu, Y. Zhang, J. Xi, Z. Kong, L. Song, Int. J. Hydrogen Energy. 2024, 56, 1475.
- 28W. Bu, Y. Zhang, Q. Qin, Y. Li, Z. Zhou, C. Hu, X. Chuai, T. Wang, P. Sun, G. Lu, Sens. Actuators, B. 2022, 369, 132281.
- 29R. Zeng, C. Cheng, F. Xing, Y. Zou, K. Ding, C. Huang, Appl. Catal., B. 2022, 316, 121680.
- 30X. Zheng, Y. Song, Y. Liu, J. Li, Y. Yang, D. Wu, W. Liu, Y. Shen, X. Tian, Small. 2023, 19, 2207623.
- 31Y. Zhao, C. Shao, Z. Lin, S. Jiang, S. Song, Small. 2020, 16, 2000944.
- 32X. Li, S. Song, Y. Gao, L. Ge, W. Song, T. Ma, J. Liu, Small. 2021, 17, 2101315.
- 33Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian, H. Fu, Small. 2018, 14, 1800763.
- 34G. Wang, X. Guo, H. Chen, Y. Zhu, Y. Min, Appl. Surf. Sci. 2023, 640, 158364.
- 35S. Zhang, X. Zhang, J. Li, E. Wang, J. Mater. Chem. A. 2017, 5, 20588.
- 36H. Liu, R. Suo, W. Li, L. Luo, H. Yang, J. Chen, C.-Z. Lu, Sep. Purif. Technol. 2024, 346, 127439.
- 37X. Han, L. Zhao, Y. Liang, J. Wang, Y. Long, Z. Zhou, Y. Zhang, Y. Li, J. Ma, Adv. Energy Mater. 2022, 12, 2202747.
- 38X. Zhao, X. Li, L. An, L. Zheng, J. Yang, D. Wang, Angew. Chem., Int. Ed. 2022, 61, 202206588.
- 39Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- 40S. Zhang, Q. Zhou, Z. Shen, X. Jin, Y. Zhang, M. Shi, J. Zhou, J. Liu, Z. Lu, Y.-N. Zhou, H. Zhang, Adv. Funct. Mater. 2021, 31, 2101922.
- 41Y. Bi, K. Xu, Y. Wang, X. Li, X. Zhang, J. Wang, Y. Zhang, Q. Liu, Q. Fang, J. Colloid Interface Sci. 2024, 661, 501.
- 42K. Zhang, Z. Mou, S. Cao, S. Wu, X. Xu, C. Li, Int. J. Hydrogen Energy. 2022, 47, 12605.
- 43Y. Yang, Q. Meng, X. Jiang, S. Meng, X. Zheng, S. Zhang, X. Fu, S. Chen, ACS Appl. Energy Mater. 2020, 3, 7736.
- 44X. Wang, F. Zhao, N. Zhang, W. Wu, Y. Wang, Nanomaterials. 2023, 13, 1326.
- 45R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen, Z.-Q. Liu, Appl. Catal., B. 2018, 231, 101.
- 46Y. Zhang, W. Zhou, Y. Tang, Y. Guo, Z. Geng, L. Liu, X. Tan, H. Wang, T. Yu, J. Ye, Appl. Catal., B. 2022, 305, 121055.
- 47W. Zhen, X. Ning, M. Wang, Y. Wu, G. Lu, J. Catal. 2018, 367, 269.
- 48Y. Liu, S. Ding, Y. Shi, X. Liu, Z. Wu, Q. Jiang, T. Zhou, N. Liu, J. Hu, Appl. Catal., B. 2018, 234, 109.
- 49C.-Q. Li, X. Du, S. Jiang, Y. Liu, Z.-L. Niu, Z.-Y. Liu, S.-S. Yi, X.-Z. Yue, Adv. Sci. 2022, 9, 2201773.
- 50L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu, Appl. Catal., B. 2017, 210, 290.
- 51M. Tayyab, U. E. Kulsoom, Y. Liu, S. Mansoor, M. Khan, Z. Akmal, A. Mushtaq, M. Arif, U. Shamriaz, L. Zhou, J. Lei, J. Zhang, Int. J. Hydrogen Energy. 2024, 51, 1400.
- 52J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Chem. Eng. J. 2022, 439, 135758.
- 53M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, J. Zhang, Adv. Funct. Mater. 2017, 27, 1702624.
- 54B. Sun, J. Zheng, D. Yin, H. Jin, X. Wang, Q. Xu, A. Liu, S. Wang, Appl. Surf. Sci. 2022, 592, 153277.
- 55N. Güy, K. Atacan, M. Özacar, Renewable Energy. 2022, 195, 107.
10.1016/j.renene.2022.05.171 Google Scholar
- 56C. Tai, H. Liu, Y. Hu, ACS Sustainable Chem. Eng. 2020, 8, 18196.
- 57N. Li, H. Fan, W. Zhao, Y. Gao, L. Ge, Appl. Surf. Sci. 2022, 590, 153028.
- 58H. Gong, Z. Li, Z. Chen, Q. Liu, M. Song, C. Huang, A. C. S. Appl, Nano Mater. 2020, 3, 3665.
- 59S. Abramovich, D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, A. Politano, Small. 2022, 18, 2201473.
- 60W. Xue, H. Sun, X. Hu, X. Bai, J. Fan, E. Liu, Chin. J. Catal. 2022, 43, 234.
- 61J. Zhao, H. Yang, Y. Li, K. Lu, J. Alloys Compd. 2020, 815, 152494.
- 62M. Ma, J. Liu, H. Zhao, S. Yue, L. Zhong, Y. Huang, X. Jia, K. Liu, X. Li, Z. Wang, S. Qu, Y. Lei, Appl. Catal., B. 2023, 325, 122327.
- 63Z. Ai, M. Huang, D. Shi, M. Yang, H. Hu, B. Zhang, Y. Shao, J. Shen, Y. Wu, X. Hao, Appl. Catal., B. 2022, 315, 121577.
- 64A. Wang, L. Zhang, X. Li, Y. Gao, N. Li, G. Lu, L. Ge, Chin. J. Catal. 2022, 43, 1295.
- 65Z. Wang, M. Li, J. Li, Y. Ma, J. Fan, E. Liu, J. Environ. Chem. Eng. 2022, 10, 107375.
- 66H. Gong, Q. Liu, C. Huang, Int. J. Hydrogen Energy. 2019, 44, 4821.
- 67X. Hao, Z. Hu, D. Xiang, Z. Jin, Mol. Catal. 2022, 528, 112417.
- 68X. Cao, Y. Tan, H. Zheng, J. Hu, X. Chen, Z. Chen, Phys. Chem. Chem. Phys. 2022, 24, 4644.
- 69S. Li, L. Wang, Y. Li, L. Zhang, A. Wang, N. Xiao, Y. Gao, N. Li, W. Song, L. Ge, J. Liu, Appl. Catal., B. 2019, 254, 145.
- 70W. Lyu, Y. Liu, J. Zhou, D. Chen, X. Zhao, R. Fang, F. Wang, Y. Li, Angew. Chem., Int. Ed. 2023, 62, 202310733.
- 71H. Su, J. Jiang, N. Li, Y. Gao, L. Ge, Chem. Eng. J. 2022, 446, 137226.
- 72Y. Tang, K. Shen, J. Zheng, B. He, J. Chen, J. Lu, W. Ge, L. Shen, P. Yang, S. Deng, Chem. Eng. J. 2022, 427, 130915.
- 73B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem., Int. Ed. 2023, 62, 202313172.
- 74X. Cheng, Y. Lu, L. Zheng, Y. Cui, M. Niibe, T. Tokushima, H. Li, Y. Zhang, G. Chen, S. Sun, J. Zhang, Nano Energy. 2020, 73, 104739.
- 75H. Su, S. Song, N. Li, Y. Gao, P. Li, L. Ge, T. Ma, Adv. Energy Mater. 2023, 13, 2301547.